在狄拉克图中生成细分

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Matías Pavez-Signé
{"title":"在狄拉克图中生成细分","authors":"Matías Pavez-Signé","doi":"10.1017/s0963548323000342","DOIUrl":null,"url":null,"abstract":"Abstract We show that for every $n\\in \\mathbb N$ and $\\log n\\le d\\lt n$ , if a graph $G$ has $N=\\Theta (dn)$ vertices and minimum degree $(1+o(1))\\frac{N}{2}$ , then it contains a spanning subdivision of every $n$ -vertex $d$ -regular graph.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spanning subdivisions in Dirac graphs\",\"authors\":\"Matías Pavez-Signé\",\"doi\":\"10.1017/s0963548323000342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that for every $n\\\\in \\\\mathbb N$ and $\\\\log n\\\\le d\\\\lt n$ , if a graph $G$ has $N=\\\\Theta (dn)$ vertices and minimum degree $(1+o(1))\\\\frac{N}{2}$ , then it contains a spanning subdivision of every $n$ -vertex $d$ -regular graph.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000342\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000342","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们证明了对于每一个$n\in \mathbb N$和$\log n\le d\lt n$,如果一个图$G$有$N=\Theta (dn)$个顶点和最小度$(1+o(1))\frac{N}{2}$,那么它包含了每一个$n$ -顶点$d$ -正则图的一个生成细分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanning subdivisions in Dirac graphs
Abstract We show that for every $n\in \mathbb N$ and $\log n\le d\lt n$ , if a graph $G$ has $N=\Theta (dn)$ vertices and minimum degree $(1+o(1))\frac{N}{2}$ , then it contains a spanning subdivision of every $n$ -vertex $d$ -regular graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信