碱和碱土金属物质对热解和co2辅助气化气体演化和能效演化的影响

IF 2.6 3区 工程技术 Q3 ENERGY & FUELS
Xinhao Ye, Jinhu Li, Wei Lu, Xuan Liu, Zhiwei Wang, Chisen Liang
{"title":"碱和碱土金属物质对热解和co2辅助气化气体演化和能效演化的影响","authors":"Xinhao Ye, Jinhu Li, Wei Lu, Xuan Liu, Zhiwei Wang, Chisen Liang","doi":"10.1115/1.4063849","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the same moles of alkali and alkaline earth metallic species were introduced into pine wood to investigate their effects on biomass pyrolysis and carbon dioxide-assisted gasification. First, thermogravimetric analysis was conducted to examine the pyrolytic behavior of pine wood loaded with alkali and alkaline earth metallic species. A semi-batch fixed bed platform was used to quantify gaseous product parameters, including gas mass flow rate, gas yield, recovered energy, energy efficiency, and net carbon dioxide consumption. Thermogravimetric results indicated that the loading of alkali and alkaline earth metallic species promoted the thermal decomposition of pine wood at low temperatures, but an inhibitory effect was observed at high temperatures. In terms of pyrolysis, adding alkaline earth metals increased syngas yields, and recovered energy, as well as energy efficiency, whereas alkali metals had the opposite effect. For the gasification, the loading of alkali metals showed a stronger catalytic than the pine wood loaded with alkaline earth metals. Based on the evolution of carbon monoxide, the effects of alkali and alkaline earth metallic species on enhancing the biochar's gasification reactivity were in the sequence of sodium > potassium > calcium > magnesium. In addition, the addition of alkali metals exhibited a stronger capacity for carbon dioxide consumption, which contributed to the management of the greenhouse gas. Considering only energy efficiency, adding alkaline earth metals in biomass pyrolysis is an optimal choice due to the higher overall energy efficiency obtained in less time.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":"24 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Alkali and Alkaline Earth Metallic Species on Gas Evolution and Energy Efficiency Evolution in Pyrolysis and Co2-Assisted Gasification\",\"authors\":\"Xinhao Ye, Jinhu Li, Wei Lu, Xuan Liu, Zhiwei Wang, Chisen Liang\",\"doi\":\"10.1115/1.4063849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the same moles of alkali and alkaline earth metallic species were introduced into pine wood to investigate their effects on biomass pyrolysis and carbon dioxide-assisted gasification. First, thermogravimetric analysis was conducted to examine the pyrolytic behavior of pine wood loaded with alkali and alkaline earth metallic species. A semi-batch fixed bed platform was used to quantify gaseous product parameters, including gas mass flow rate, gas yield, recovered energy, energy efficiency, and net carbon dioxide consumption. Thermogravimetric results indicated that the loading of alkali and alkaline earth metallic species promoted the thermal decomposition of pine wood at low temperatures, but an inhibitory effect was observed at high temperatures. In terms of pyrolysis, adding alkaline earth metals increased syngas yields, and recovered energy, as well as energy efficiency, whereas alkali metals had the opposite effect. For the gasification, the loading of alkali metals showed a stronger catalytic than the pine wood loaded with alkaline earth metals. Based on the evolution of carbon monoxide, the effects of alkali and alkaline earth metallic species on enhancing the biochar's gasification reactivity were in the sequence of sodium > potassium > calcium > magnesium. In addition, the addition of alkali metals exhibited a stronger capacity for carbon dioxide consumption, which contributed to the management of the greenhouse gas. Considering only energy efficiency, adding alkaline earth metals in biomass pyrolysis is an optimal choice due to the higher overall energy efficiency obtained in less time.\",\"PeriodicalId\":15676,\"journal\":{\"name\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063849\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063849","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在松材中加入相同摩尔量的碱土和碱土金属物质,研究其对生物质热解和二氧化碳辅助气化的影响。首先,通过热重分析研究了碱和碱土金属对松材的热解行为。采用半间歇式固定床平台对气体产品参数进行量化,包括气体质量流量、产气量、回收能量、能源效率和净二氧化碳消耗量。热重分析结果表明,碱和碱土金属在低温下对松材的热分解有促进作用,在高温下对松材的热分解有抑制作用。在热解过程中,添加碱土金属可提高合成气产率、回收能量和能源效率,而添加碱土金属则相反。对于气化,碱金属负载比碱土金属负载的松木表现出更强的催化作用。基于一氧化碳的演化,碱和碱土金属对生物炭气化反应性的增强作用顺序为:钠;钾和gt;钙和gt;镁。此外,碱金属的添加表现出更强的二氧化碳消耗能力,有助于温室气体的管理。仅从能效角度考虑,在生物质热解过程中加入碱土金属是一种最佳选择,因为在更短的时间内获得了更高的整体能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Alkali and Alkaline Earth Metallic Species on Gas Evolution and Energy Efficiency Evolution in Pyrolysis and Co2-Assisted Gasification
Abstract In this study, the same moles of alkali and alkaline earth metallic species were introduced into pine wood to investigate their effects on biomass pyrolysis and carbon dioxide-assisted gasification. First, thermogravimetric analysis was conducted to examine the pyrolytic behavior of pine wood loaded with alkali and alkaline earth metallic species. A semi-batch fixed bed platform was used to quantify gaseous product parameters, including gas mass flow rate, gas yield, recovered energy, energy efficiency, and net carbon dioxide consumption. Thermogravimetric results indicated that the loading of alkali and alkaline earth metallic species promoted the thermal decomposition of pine wood at low temperatures, but an inhibitory effect was observed at high temperatures. In terms of pyrolysis, adding alkaline earth metals increased syngas yields, and recovered energy, as well as energy efficiency, whereas alkali metals had the opposite effect. For the gasification, the loading of alkali metals showed a stronger catalytic than the pine wood loaded with alkaline earth metals. Based on the evolution of carbon monoxide, the effects of alkali and alkaline earth metallic species on enhancing the biochar's gasification reactivity were in the sequence of sodium > potassium > calcium > magnesium. In addition, the addition of alkali metals exhibited a stronger capacity for carbon dioxide consumption, which contributed to the management of the greenhouse gas. Considering only energy efficiency, adding alkaline earth metals in biomass pyrolysis is an optimal choice due to the higher overall energy efficiency obtained in less time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
30.00%
发文量
213
审稿时长
4.5 months
期刊介绍: Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信