R. Vidhya, Dhanalaxmi Banavath, S. Kayalvili, Swarna Mahesh Naidu, V.Charles Prabu, D. Sugumar, R. Hemalatha, S. Vimal, R.G. Vidhya
{"title":"基于LSTM混合深度学习模型的残差神经网络阿尔茨海默病检测","authors":"R. Vidhya, Dhanalaxmi Banavath, S. Kayalvili, Swarna Mahesh Naidu, V.Charles Prabu, D. Sugumar, R. Hemalatha, S. Vimal, R.G. Vidhya","doi":"10.3233/jifs-235059","DOIUrl":null,"url":null,"abstract":"Early Alzheimer’s disease detection is essential for facilitating prompt intervention and enhancing the quality of care provided to patients. This research presents a novel strategy for the diagnosis of Alzheimer’s disease that makes use of sophisticated sampling methods in conjunction with a hybrid model of deep learning. We use stratified sampling, ADASYN (Adaptive Synthetic Sampling), and Cluster- Centroids approaches to ensure a balanced representation of Alzheimer’s and non-Alzheimer’s cases during model training in order to meet the issues posed by imbalanced data distributions in clinical datasets. This allows us to solve the challenges posed by imbalanced data distributions in clinical datasets. A strong hybrid architecture is constructed by combining a Residual Neural Network (ResNet) with Residual Neural Network (ResNet) units. This architecture makes the most of both the feature extraction capabilities of ResNet and the capacity of LSTM to capture temporal dependencies. The findings demonstrate that the model is superior to traditional approaches to machine learning and single-model architectures in terms of accuracy, sensitivity, and specificity. The hybrid deep learning model demonstrates exceptional capabilities in identifying early indicators of Alzheimer’s disease with a high degree of accuracy, which paves","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"9 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alzheimer’s disease detection using residual neural network with LSTM hybrid deep learning models\",\"authors\":\"R. Vidhya, Dhanalaxmi Banavath, S. Kayalvili, Swarna Mahesh Naidu, V.Charles Prabu, D. Sugumar, R. Hemalatha, S. Vimal, R.G. Vidhya\",\"doi\":\"10.3233/jifs-235059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early Alzheimer’s disease detection is essential for facilitating prompt intervention and enhancing the quality of care provided to patients. This research presents a novel strategy for the diagnosis of Alzheimer’s disease that makes use of sophisticated sampling methods in conjunction with a hybrid model of deep learning. We use stratified sampling, ADASYN (Adaptive Synthetic Sampling), and Cluster- Centroids approaches to ensure a balanced representation of Alzheimer’s and non-Alzheimer’s cases during model training in order to meet the issues posed by imbalanced data distributions in clinical datasets. This allows us to solve the challenges posed by imbalanced data distributions in clinical datasets. A strong hybrid architecture is constructed by combining a Residual Neural Network (ResNet) with Residual Neural Network (ResNet) units. This architecture makes the most of both the feature extraction capabilities of ResNet and the capacity of LSTM to capture temporal dependencies. The findings demonstrate that the model is superior to traditional approaches to machine learning and single-model architectures in terms of accuracy, sensitivity, and specificity. The hybrid deep learning model demonstrates exceptional capabilities in identifying early indicators of Alzheimer’s disease with a high degree of accuracy, which paves\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-235059\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-235059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Alzheimer’s disease detection using residual neural network with LSTM hybrid deep learning models
Early Alzheimer’s disease detection is essential for facilitating prompt intervention and enhancing the quality of care provided to patients. This research presents a novel strategy for the diagnosis of Alzheimer’s disease that makes use of sophisticated sampling methods in conjunction with a hybrid model of deep learning. We use stratified sampling, ADASYN (Adaptive Synthetic Sampling), and Cluster- Centroids approaches to ensure a balanced representation of Alzheimer’s and non-Alzheimer’s cases during model training in order to meet the issues posed by imbalanced data distributions in clinical datasets. This allows us to solve the challenges posed by imbalanced data distributions in clinical datasets. A strong hybrid architecture is constructed by combining a Residual Neural Network (ResNet) with Residual Neural Network (ResNet) units. This architecture makes the most of both the feature extraction capabilities of ResNet and the capacity of LSTM to capture temporal dependencies. The findings demonstrate that the model is superior to traditional approaches to machine learning and single-model architectures in terms of accuracy, sensitivity, and specificity. The hybrid deep learning model demonstrates exceptional capabilities in identifying early indicators of Alzheimer’s disease with a high degree of accuracy, which paves
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.