A Mekala, Bhaskar Kamal Baishya, Kamarajugadda Tulasi Vigneswara Rao, Deepak A Vidhate, Vinayak A Drave, P Vishnu Prasanth
{"title":"温度预测的大数据和机器学习框架","authors":"A Mekala, Bhaskar Kamal Baishya, Kamarajugadda Tulasi Vigneswara Rao, Deepak A Vidhate, Vinayak A Drave, P Vishnu Prasanth","doi":"10.4108/ew.4195","DOIUrl":null,"url":null,"abstract":"This research aims to develop a Supporting Big Data and ML with a Framework for temperature forecasting using Artificial Neural Networks (ANN). The proposed framework utilizes a massive amount of historical weather data to train the ANN model, which can effectively learn the complex non- correlations that are linear with the parameters and temperature. The input variables include various weather parameters, such as humidity, wind speed, precipitation, and pressure. The framework involves three main stages: data pre-processing, model training, and temperature forecasting. In the data pre-processing stage, the raw weather data is cleaned, normalized, and transformed into a suitable format for model training. The data is then split into training, validation, and testing sets to ensure model accuracy. In model instruction stage, the ANN trained model using a backpropagation algorithm to adjust affected by the inherent biases and model based on the input and output data. The training process is iterative, and Using the validation, the efficiency of the model is measured. set to prevent overfitting. Finally, in the temperature forecasting stage, the trained ANN model is used to predict the temperature for a given set of weather parameters. The accuracy of the temperature forecasting is evaluated using the testing set, and the results are compared to other forecasting methods, such as statistical methods and numerical weather prediction models. The proposed framework has several advantages over traditional temperature forecasting methods. Firstly, it utilizes a vast amount of data, which enhances the accuracy of the forecast. Secondly, the ANN model can learn the interactions between the input variables that are not linear and temperature, which cannot be captured by traditional statistical methods. Finally, the framework can be easily extended to incorporate additional weather parameters or to forecast other environmental variables. The results of this research show that the proposed framework can effectively forecast temperature with high accuracy, outperforming traditional statistical methods and numerical weather prediction models. Therefore, it has the potential to improve weather forecasting and contribute to various applications, such as agriculture, energy management, and transportation.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data and Machine Learning Framework for Temperature Forecasting\",\"authors\":\"A Mekala, Bhaskar Kamal Baishya, Kamarajugadda Tulasi Vigneswara Rao, Deepak A Vidhate, Vinayak A Drave, P Vishnu Prasanth\",\"doi\":\"10.4108/ew.4195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a Supporting Big Data and ML with a Framework for temperature forecasting using Artificial Neural Networks (ANN). The proposed framework utilizes a massive amount of historical weather data to train the ANN model, which can effectively learn the complex non- correlations that are linear with the parameters and temperature. The input variables include various weather parameters, such as humidity, wind speed, precipitation, and pressure. The framework involves three main stages: data pre-processing, model training, and temperature forecasting. In the data pre-processing stage, the raw weather data is cleaned, normalized, and transformed into a suitable format for model training. The data is then split into training, validation, and testing sets to ensure model accuracy. In model instruction stage, the ANN trained model using a backpropagation algorithm to adjust affected by the inherent biases and model based on the input and output data. The training process is iterative, and Using the validation, the efficiency of the model is measured. set to prevent overfitting. Finally, in the temperature forecasting stage, the trained ANN model is used to predict the temperature for a given set of weather parameters. The accuracy of the temperature forecasting is evaluated using the testing set, and the results are compared to other forecasting methods, such as statistical methods and numerical weather prediction models. The proposed framework has several advantages over traditional temperature forecasting methods. Firstly, it utilizes a vast amount of data, which enhances the accuracy of the forecast. Secondly, the ANN model can learn the interactions between the input variables that are not linear and temperature, which cannot be captured by traditional statistical methods. Finally, the framework can be easily extended to incorporate additional weather parameters or to forecast other environmental variables. The results of this research show that the proposed framework can effectively forecast temperature with high accuracy, outperforming traditional statistical methods and numerical weather prediction models. Therefore, it has the potential to improve weather forecasting and contribute to various applications, such as agriculture, energy management, and transportation.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.4195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Big Data and Machine Learning Framework for Temperature Forecasting
This research aims to develop a Supporting Big Data and ML with a Framework for temperature forecasting using Artificial Neural Networks (ANN). The proposed framework utilizes a massive amount of historical weather data to train the ANN model, which can effectively learn the complex non- correlations that are linear with the parameters and temperature. The input variables include various weather parameters, such as humidity, wind speed, precipitation, and pressure. The framework involves three main stages: data pre-processing, model training, and temperature forecasting. In the data pre-processing stage, the raw weather data is cleaned, normalized, and transformed into a suitable format for model training. The data is then split into training, validation, and testing sets to ensure model accuracy. In model instruction stage, the ANN trained model using a backpropagation algorithm to adjust affected by the inherent biases and model based on the input and output data. The training process is iterative, and Using the validation, the efficiency of the model is measured. set to prevent overfitting. Finally, in the temperature forecasting stage, the trained ANN model is used to predict the temperature for a given set of weather parameters. The accuracy of the temperature forecasting is evaluated using the testing set, and the results are compared to other forecasting methods, such as statistical methods and numerical weather prediction models. The proposed framework has several advantages over traditional temperature forecasting methods. Firstly, it utilizes a vast amount of data, which enhances the accuracy of the forecast. Secondly, the ANN model can learn the interactions between the input variables that are not linear and temperature, which cannot be captured by traditional statistical methods. Finally, the framework can be easily extended to incorporate additional weather parameters or to forecast other environmental variables. The results of this research show that the proposed framework can effectively forecast temperature with high accuracy, outperforming traditional statistical methods and numerical weather prediction models. Therefore, it has the potential to improve weather forecasting and contribute to various applications, such as agriculture, energy management, and transportation.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.