薄管结构非牛顿稳态流动图方程的数值研究

IF 1.6 3区 数学 Q1 MATHEMATICS
Nikolajus Kozulinas, Grigory Panasenko, Konstantinas Pileckas, Vytenis Šumskas
{"title":"薄管结构非牛顿稳态流动图方程的数值研究","authors":"Nikolajus Kozulinas, Grigory Panasenko, Konstantinas Pileckas, Vytenis Šumskas","doi":"10.3846/mma.2023.18311","DOIUrl":null,"url":null,"abstract":"The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions in the vertices. Non-Newtonian rheology of the flow generates nonlinear equations on the graph. A new numerical method for second order nonlinear differential equations on the graph is introduced and numerically tested.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"219 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL STUDY OF THE EQUATION ON THE GRAPH FOR THE STEADY STATE NON-NEWTONIAN FLOW IN THIN TUBE STRUCTURE\",\"authors\":\"Nikolajus Kozulinas, Grigory Panasenko, Konstantinas Pileckas, Vytenis Šumskas\",\"doi\":\"10.3846/mma.2023.18311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions in the vertices. Non-Newtonian rheology of the flow generates nonlinear equations on the graph. A new numerical method for second order nonlinear differential equations on the graph is introduced and numerically tested.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.18311\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mma.2023.18311","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对细管结构中的粘性流动进行降维处理,得到了图上具有基尔霍夫型结条件的宏观压力方程。流动的非牛顿流变性在图上产生非线性方程。介绍了一种新的求解二阶非线性图上微分方程的数值方法,并进行了数值试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL STUDY OF THE EQUATION ON THE GRAPH FOR THE STEADY STATE NON-NEWTONIAN FLOW IN THIN TUBE STRUCTURE
The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions in the vertices. Non-Newtonian rheology of the flow generates nonlinear equations on the graph. A new numerical method for second order nonlinear differential equations on the graph is introduced and numerically tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信