{"title":"锌离子电池研究与发展综述","authors":"Matthew Mackereth, Rong Kou, Sohail Anwar","doi":"10.24018/ejeng.2023.8.5.2983","DOIUrl":null,"url":null,"abstract":"With the advancement in the technology of lithium-ion batteries, the popularity and awareness of rechargeable, durable, long-lasting, and lightweight ion batteries have been in the public eye for a while now. Lithium-ion (Li-ion) is not the only type of ion battery out there. Zinc-ion (Zn-ion) batteries are a heavier, but safer, cheaper, and environmentally friendly form of this battery technology that has uses when portability is not the primary objective. One such use case is large format energy storage for intermittent renewable energy such as solar and wind fields for when the sun is no longer shining, or the wind blowing. One of the disadvantages of Zn-ion batteries is that the current battery life needs to be increased to stand a chance against Li-ion batteries in terms of consumer demands. This paper describes the effect of electrode structures and charging/discharging rates on battery cycle life in coin cells. The symmetric cell study shows that higher charging/discharging rates decrease the battery's cycle life, and the polymer-coated Zn anodes improve the battery's cycle life. It is also noted that maintaining good contact with all the major components in batteries is crucial for batteries to work properly. The battery-making process carried out in the lab and the important details of battery manufacturing are described in this manuscript.","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc-Ion Battery Research and Development: A Brief Overview\",\"authors\":\"Matthew Mackereth, Rong Kou, Sohail Anwar\",\"doi\":\"10.24018/ejeng.2023.8.5.2983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement in the technology of lithium-ion batteries, the popularity and awareness of rechargeable, durable, long-lasting, and lightweight ion batteries have been in the public eye for a while now. Lithium-ion (Li-ion) is not the only type of ion battery out there. Zinc-ion (Zn-ion) batteries are a heavier, but safer, cheaper, and environmentally friendly form of this battery technology that has uses when portability is not the primary objective. One such use case is large format energy storage for intermittent renewable energy such as solar and wind fields for when the sun is no longer shining, or the wind blowing. One of the disadvantages of Zn-ion batteries is that the current battery life needs to be increased to stand a chance against Li-ion batteries in terms of consumer demands. This paper describes the effect of electrode structures and charging/discharging rates on battery cycle life in coin cells. The symmetric cell study shows that higher charging/discharging rates decrease the battery's cycle life, and the polymer-coated Zn anodes improve the battery's cycle life. It is also noted that maintaining good contact with all the major components in batteries is crucial for batteries to work properly. The battery-making process carried out in the lab and the important details of battery manufacturing are described in this manuscript.\",\"PeriodicalId\":12001,\"journal\":{\"name\":\"European Journal of Engineering and Technology Research\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejeng.2023.8.5.2983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2023.8.5.2983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zinc-Ion Battery Research and Development: A Brief Overview
With the advancement in the technology of lithium-ion batteries, the popularity and awareness of rechargeable, durable, long-lasting, and lightweight ion batteries have been in the public eye for a while now. Lithium-ion (Li-ion) is not the only type of ion battery out there. Zinc-ion (Zn-ion) batteries are a heavier, but safer, cheaper, and environmentally friendly form of this battery technology that has uses when portability is not the primary objective. One such use case is large format energy storage for intermittent renewable energy such as solar and wind fields for when the sun is no longer shining, or the wind blowing. One of the disadvantages of Zn-ion batteries is that the current battery life needs to be increased to stand a chance against Li-ion batteries in terms of consumer demands. This paper describes the effect of electrode structures and charging/discharging rates on battery cycle life in coin cells. The symmetric cell study shows that higher charging/discharging rates decrease the battery's cycle life, and the polymer-coated Zn anodes improve the battery's cycle life. It is also noted that maintaining good contact with all the major components in batteries is crucial for batteries to work properly. The battery-making process carried out in the lab and the important details of battery manufacturing are described in this manuscript.