关于Coifman, Lions, Meyer和Semmes的Jacobian问题的注记

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Sauli Lindberg
{"title":"关于Coifman, Lions, Meyer和Semmes的Jacobian问题的注记","authors":"Sauli Lindberg","doi":"10.1007/s00041-023-10041-3","DOIUrl":null,"url":null,"abstract":"Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\\mathcal {H}^1({\\mathbb {R}}^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Note on the Jacobian Problem of Coifman, Lions, Meyer and Semmes\",\"authors\":\"Sauli Lindberg\",\"doi\":\"10.1007/s00041-023-10041-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\\\\mathcal {H}^1({\\\\mathbb {R}}^n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.\",\"PeriodicalId\":15993,\"journal\":{\"name\":\"Journal of Fourier Analysis and Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fourier Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10041-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00041-023-10041-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

Coifman, Lions, Meyer和Semmes在1993年提出了Jacobian算子和其他补偿紧性量是否将它们的自然定义域映射到实变量Hardy空间$$\mathcal {H}^1({\mathbb {R}}^n)$$ h1 (rn)上的问题。在二次算子的情况下,我们给出了一个公理化的巴拿赫空间几何方法。我们在主要的开放情况下也取得了进展,平面上的雅可比方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Jacobian Problem of Coifman, Lions, Meyer and Semmes
Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\mathcal {H}^1({\mathbb {R}}^n)$$ H 1 ( R n ) . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
16.70%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics. TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers. Areas of applications include the following: antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信