{"title":"关于Coifman, Lions, Meyer和Semmes的Jacobian问题的注记","authors":"Sauli Lindberg","doi":"10.1007/s00041-023-10041-3","DOIUrl":null,"url":null,"abstract":"Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\\mathcal {H}^1({\\mathbb {R}}^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Note on the Jacobian Problem of Coifman, Lions, Meyer and Semmes\",\"authors\":\"Sauli Lindberg\",\"doi\":\"10.1007/s00041-023-10041-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\\\\mathcal {H}^1({\\\\mathbb {R}}^n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.\",\"PeriodicalId\":15993,\"journal\":{\"name\":\"Journal of Fourier Analysis and Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fourier Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10041-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00041-023-10041-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Note on the Jacobian Problem of Coifman, Lions, Meyer and Semmes
Abstract Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space $$\mathcal {H}^1({\mathbb {R}}^n)$$ H1(Rn) . We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.
期刊介绍:
The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics.
TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers.
Areas of applications include the following:
antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications