Kyle Finner, Bomee Lee, Ranga-Ram Chary, M. James Jee, Christopher Hirata, Giuseppe Congedo, Peter Taylor, Kim HyeongHan
{"title":"CANDELS场近红外弱透镜(NIRWL)测量。1 .点扩散函数建模与系统学","authors":"Kyle Finner, Bomee Lee, Ranga-Ram Chary, M. James Jee, Christopher Hirata, Giuseppe Congedo, Peter Taylor, Kim HyeongHan","doi":"10.3847/1538-4357/acfafd","DOIUrl":null,"url":null,"abstract":"Abstract We have undertaken a near-IR weak-lensing (NIRWL) analysis of the CANDELS HST/WFC3-IR F160W observations. With the Gaia proper motion–corrected catalog as an astrometric reference, we updated the astrometry of the five CANDELS mosaics and achieved an absolute alignment within 0.″02 ± 0.″02, on average, which is a factor of several superior to existing mosaics. These mosaics are available to download ( https://drive.google.com/drive/folders/1k9WEV3tBOuRKBlcaTJ0-wTZnUCisS__r ). We investigated the systematic effects that need to be corrected for weak-lensing measurements. We find that the largest contributing systematic effect is caused by undersampling. We find a subpixel centroid dependence on the PSF shape that causes the PSF ellipticity and size to vary by up to 0.02% and 3%, respectively. Using the UDS as an example field, we show that undersampling induces a multiplicative shear bias of −0.025. We find that the brighter-fatter effect causes a 2% increase in the size of the PSF and discover a brighter-rounder effect that changes the ellipticity by 0.006. Based on the small range of slopes in a galaxy’s spectral energy distribution (SED) within the WFC3-IR bandpasses, we suggest that the impact of the galaxy SED on the PSF is minor. Finally, we model the PSF of WFC3-IR F160W for weak lensing using a principal component analysis. The PSF models account for temporal and spatial variations of the PSF. The PSF corrections result in residual ellipticities and sizes, ∣ de 1 ∣ < 0.0005 ± 0.0003, ∣ de 2 ∣ < 0.0005 ± 0.0003, and ∣ dR ∣ < 0.0005 ± 0.0001, that are sufficient for the upcoming NIRWL search for massive overdensities in the five CANDELS fields.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Near-IR Weak-lensing (NIRWL) Measurements in the CANDELS Fields. I. Point-spread Function Modeling and Systematics\",\"authors\":\"Kyle Finner, Bomee Lee, Ranga-Ram Chary, M. James Jee, Christopher Hirata, Giuseppe Congedo, Peter Taylor, Kim HyeongHan\",\"doi\":\"10.3847/1538-4357/acfafd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We have undertaken a near-IR weak-lensing (NIRWL) analysis of the CANDELS HST/WFC3-IR F160W observations. With the Gaia proper motion–corrected catalog as an astrometric reference, we updated the astrometry of the five CANDELS mosaics and achieved an absolute alignment within 0.″02 ± 0.″02, on average, which is a factor of several superior to existing mosaics. These mosaics are available to download ( https://drive.google.com/drive/folders/1k9WEV3tBOuRKBlcaTJ0-wTZnUCisS__r ). We investigated the systematic effects that need to be corrected for weak-lensing measurements. We find that the largest contributing systematic effect is caused by undersampling. We find a subpixel centroid dependence on the PSF shape that causes the PSF ellipticity and size to vary by up to 0.02% and 3%, respectively. Using the UDS as an example field, we show that undersampling induces a multiplicative shear bias of −0.025. We find that the brighter-fatter effect causes a 2% increase in the size of the PSF and discover a brighter-rounder effect that changes the ellipticity by 0.006. Based on the small range of slopes in a galaxy’s spectral energy distribution (SED) within the WFC3-IR bandpasses, we suggest that the impact of the galaxy SED on the PSF is minor. Finally, we model the PSF of WFC3-IR F160W for weak lensing using a principal component analysis. The PSF models account for temporal and spatial variations of the PSF. The PSF corrections result in residual ellipticities and sizes, ∣ de 1 ∣ < 0.0005 ± 0.0003, ∣ de 2 ∣ < 0.0005 ± 0.0003, and ∣ dR ∣ < 0.0005 ± 0.0001, that are sufficient for the upcoming NIRWL search for massive overdensities in the five CANDELS fields.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfafd\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfafd","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Near-IR Weak-lensing (NIRWL) Measurements in the CANDELS Fields. I. Point-spread Function Modeling and Systematics
Abstract We have undertaken a near-IR weak-lensing (NIRWL) analysis of the CANDELS HST/WFC3-IR F160W observations. With the Gaia proper motion–corrected catalog as an astrometric reference, we updated the astrometry of the five CANDELS mosaics and achieved an absolute alignment within 0.″02 ± 0.″02, on average, which is a factor of several superior to existing mosaics. These mosaics are available to download ( https://drive.google.com/drive/folders/1k9WEV3tBOuRKBlcaTJ0-wTZnUCisS__r ). We investigated the systematic effects that need to be corrected for weak-lensing measurements. We find that the largest contributing systematic effect is caused by undersampling. We find a subpixel centroid dependence on the PSF shape that causes the PSF ellipticity and size to vary by up to 0.02% and 3%, respectively. Using the UDS as an example field, we show that undersampling induces a multiplicative shear bias of −0.025. We find that the brighter-fatter effect causes a 2% increase in the size of the PSF and discover a brighter-rounder effect that changes the ellipticity by 0.006. Based on the small range of slopes in a galaxy’s spectral energy distribution (SED) within the WFC3-IR bandpasses, we suggest that the impact of the galaxy SED on the PSF is minor. Finally, we model the PSF of WFC3-IR F160W for weak lensing using a principal component analysis. The PSF models account for temporal and spatial variations of the PSF. The PSF corrections result in residual ellipticities and sizes, ∣ de 1 ∣ < 0.0005 ± 0.0003, ∣ de 2 ∣ < 0.0005 ± 0.0003, and ∣ dR ∣ < 0.0005 ± 0.0001, that are sufficient for the upcoming NIRWL search for massive overdensities in the five CANDELS fields.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.