使用最优回归树的规定性价格优化

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Shunnosuke Ikeda , Naoki Nishimura , Noriyoshi Sukegawa , Yuichi Takano
{"title":"使用最优回归树的规定性价格优化","authors":"Shunnosuke Ikeda ,&nbsp;Naoki Nishimura ,&nbsp;Noriyoshi Sukegawa ,&nbsp;Yuichi Takano","doi":"10.1016/j.orp.2023.100290","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with prescriptive price optimization, which integrates machine learning models into price optimization to maximize future revenues or profits of multiple items. The prescriptive price optimization requires accurate demand forecasting models because the prediction accuracy of these models has a direct impact on price optimization aimed at increasing revenues and profits. The goal of this paper is to establish a novel framework of prescriptive price optimization using optimal regression trees, which can achieve high prediction accuracy without losing interpretability by means of mixed-integer optimization (MIO) techniques. We use the optimal regression trees for demand forecasting and then formulate the associated price optimization problem as a mixed-integer linear optimization (MILO) problem. We also develop a scalable heuristic algorithm based on the randomized coordinate ascent for efficient price optimization. Simulation results demonstrate the effectiveness of our method for price optimization and the computational efficiency of the heuristic algorithm.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"11 ","pages":"Article 100290"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716023000258/pdfft?md5=4e424d41dfd20c9c705fe65d9b931e91&pid=1-s2.0-S2214716023000258-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Prescriptive price optimization using optimal regression trees\",\"authors\":\"Shunnosuke Ikeda ,&nbsp;Naoki Nishimura ,&nbsp;Noriyoshi Sukegawa ,&nbsp;Yuichi Takano\",\"doi\":\"10.1016/j.orp.2023.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with prescriptive price optimization, which integrates machine learning models into price optimization to maximize future revenues or profits of multiple items. The prescriptive price optimization requires accurate demand forecasting models because the prediction accuracy of these models has a direct impact on price optimization aimed at increasing revenues and profits. The goal of this paper is to establish a novel framework of prescriptive price optimization using optimal regression trees, which can achieve high prediction accuracy without losing interpretability by means of mixed-integer optimization (MIO) techniques. We use the optimal regression trees for demand forecasting and then formulate the associated price optimization problem as a mixed-integer linear optimization (MILO) problem. We also develop a scalable heuristic algorithm based on the randomized coordinate ascent for efficient price optimization. Simulation results demonstrate the effectiveness of our method for price optimization and the computational efficiency of the heuristic algorithm.</p></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"11 \",\"pages\":\"Article 100290\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214716023000258/pdfft?md5=4e424d41dfd20c9c705fe65d9b931e91&pid=1-s2.0-S2214716023000258-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716023000258\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716023000258","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

本文关注的是规定性价格优化,它将机器学习模型集成到价格优化中,以最大化多个项目的未来收入或利润。规定性的价格优化需要准确的需求预测模型,因为这些模型的预测准确性直接影响到以增加收入和利润为目标的价格优化。本文的目标是利用最优回归树建立一种新的规定性价格优化框架,该框架可以在不失去可解释性的前提下获得较高的预测精度。我们使用最优回归树进行需求预测,然后将相关的价格优化问题表述为混合整数线性优化(MILO)问题。我们还开发了一种基于随机坐标上升的可扩展启发式算法,用于有效的价格优化。仿真结果验证了该方法的有效性和启发式算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescriptive price optimization using optimal regression trees

This paper is concerned with prescriptive price optimization, which integrates machine learning models into price optimization to maximize future revenues or profits of multiple items. The prescriptive price optimization requires accurate demand forecasting models because the prediction accuracy of these models has a direct impact on price optimization aimed at increasing revenues and profits. The goal of this paper is to establish a novel framework of prescriptive price optimization using optimal regression trees, which can achieve high prediction accuracy without losing interpretability by means of mixed-integer optimization (MIO) techniques. We use the optimal regression trees for demand forecasting and then formulate the associated price optimization problem as a mixed-integer linear optimization (MILO) problem. We also develop a scalable heuristic algorithm based on the randomized coordinate ascent for efficient price optimization. Simulation results demonstrate the effectiveness of our method for price optimization and the computational efficiency of the heuristic algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信