{"title":"在有负面客户、被动故障和延迟维修的重审队列上","authors":"Yunna Han, Ruiling Tian, Xinyu Wu, Liuqing He","doi":"10.1017/s0269964823000219","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies an M/M/1 retrial queue with negative customers, passive breakdown, and delayed repairs. Assume that the breakdown behavior of the server during idle periods is different from that during busy periods. Passive breakdowns may occur when the server is idle, due to the lack of monitoring of the server during idle periods. When the passive breakdown occurs, the server does not get repaired immediately and enters a delayed repair phase. Negative customers arrive during the busy period, which will cause the server to break down and remove the serving customers. Under steady-state conditions, we obtain explicit expressions of the probability generating functions for the steady-state distribution, together with some important performance measures for the system. In addition, we present some numerical examples to illustrate the effects of some system parameters on important performance measures and the cost function. Finally, based on the reward-cost structure, we discuss Nash equilibrium and socially optimal strategy and numerically analyze the influence of system parameters on optimal strategies and optimal social benefits.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"6 3","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a retrial queue with negative customers, passive breakdown, and delayed repairs\",\"authors\":\"Yunna Han, Ruiling Tian, Xinyu Wu, Liuqing He\",\"doi\":\"10.1017/s0269964823000219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies an M/M/1 retrial queue with negative customers, passive breakdown, and delayed repairs. Assume that the breakdown behavior of the server during idle periods is different from that during busy periods. Passive breakdowns may occur when the server is idle, due to the lack of monitoring of the server during idle periods. When the passive breakdown occurs, the server does not get repaired immediately and enters a delayed repair phase. Negative customers arrive during the busy period, which will cause the server to break down and remove the serving customers. Under steady-state conditions, we obtain explicit expressions of the probability generating functions for the steady-state distribution, together with some important performance measures for the system. In addition, we present some numerical examples to illustrate the effects of some system parameters on important performance measures and the cost function. Finally, based on the reward-cost structure, we discuss Nash equilibrium and socially optimal strategy and numerically analyze the influence of system parameters on optimal strategies and optimal social benefits.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964823000219\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0269964823000219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
On a retrial queue with negative customers, passive breakdown, and delayed repairs
Abstract This paper studies an M/M/1 retrial queue with negative customers, passive breakdown, and delayed repairs. Assume that the breakdown behavior of the server during idle periods is different from that during busy periods. Passive breakdowns may occur when the server is idle, due to the lack of monitoring of the server during idle periods. When the passive breakdown occurs, the server does not get repaired immediately and enters a delayed repair phase. Negative customers arrive during the busy period, which will cause the server to break down and remove the serving customers. Under steady-state conditions, we obtain explicit expressions of the probability generating functions for the steady-state distribution, together with some important performance measures for the system. In addition, we present some numerical examples to illustrate the effects of some system parameters on important performance measures and the cost function. Finally, based on the reward-cost structure, we discuss Nash equilibrium and socially optimal strategy and numerically analyze the influence of system parameters on optimal strategies and optimal social benefits.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.