{"title":"多孔钛脊柱保持器与传统脊柱保持器的有限元对比分析","authors":"","doi":"10.56042/jsir.v82i11.5506","DOIUrl":null,"url":null,"abstract":"The objective of this study is to compare the stress shielding effect of various conventional as well as modified additive manufactured porous materials used for spinal cages. A finite element study was performed by changing the design (fully porous and hybrid) and the materials (PEEK, CFR-PEEK, Titanium) of spinal cages. All the models were simulated under uniaxial compression, to study the stress shielding effect. The Finite Element Analysis results showed that the hybrid spinal cage transfers more stress to its adjacent vertebrae than the other design configurations under uniaxial compression. The hybrid titanium cage was most effective in reducing the stress shielding effect. The hybrid cage is stronger than PEEK & CFR-PEEK cages, however, due to the porous structure reduced stress shielding was observed.","PeriodicalId":17010,"journal":{"name":"Journal of Scientific & Industrial Research","volume":"106 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Porous Titanium Spinal Cage with Conventional Spinal Cages: A Finite Element Study\",\"authors\":\"\",\"doi\":\"10.56042/jsir.v82i11.5506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to compare the stress shielding effect of various conventional as well as modified additive manufactured porous materials used for spinal cages. A finite element study was performed by changing the design (fully porous and hybrid) and the materials (PEEK, CFR-PEEK, Titanium) of spinal cages. All the models were simulated under uniaxial compression, to study the stress shielding effect. The Finite Element Analysis results showed that the hybrid spinal cage transfers more stress to its adjacent vertebrae than the other design configurations under uniaxial compression. The hybrid titanium cage was most effective in reducing the stress shielding effect. The hybrid cage is stronger than PEEK & CFR-PEEK cages, however, due to the porous structure reduced stress shielding was observed.\",\"PeriodicalId\":17010,\"journal\":{\"name\":\"Journal of Scientific & Industrial Research\",\"volume\":\"106 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific & Industrial Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/jsir.v82i11.5506\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific & Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/jsir.v82i11.5506","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative Analysis of Porous Titanium Spinal Cage with Conventional Spinal Cages: A Finite Element Study
The objective of this study is to compare the stress shielding effect of various conventional as well as modified additive manufactured porous materials used for spinal cages. A finite element study was performed by changing the design (fully porous and hybrid) and the materials (PEEK, CFR-PEEK, Titanium) of spinal cages. All the models were simulated under uniaxial compression, to study the stress shielding effect. The Finite Element Analysis results showed that the hybrid spinal cage transfers more stress to its adjacent vertebrae than the other design configurations under uniaxial compression. The hybrid titanium cage was most effective in reducing the stress shielding effect. The hybrid cage is stronger than PEEK & CFR-PEEK cages, however, due to the porous structure reduced stress shielding was observed.
期刊介绍:
This oldest journal of NISCAIR (started in 1942) carries comprehensive reviews in different fields of science & technology (S&T), including industry, original articles, short communications and case studies, on various facets of industrial development, industrial research, technology management, technology forecasting, instrumentation and analytical techniques, specially of direct relevance to industrial entrepreneurs, debates on key industrial issues, editorials/technical commentaries, reports on S&T conferences, extensive book reviews and various industry related announcements.It covers all facets of industrial development.