Jiyong Shim, Youngjo Kim, Hyesun Yang, Hyosung Cho, Kwangyun Choi
{"title":"基于π角稀疏度的双能材料分解技术在固定式CT行李扫描仪中的实现,以增强威胁检测","authors":"Jiyong Shim, Youngjo Kim, Hyesun Yang, Hyosung Cho, Kwangyun Choi","doi":"10.1088/1748-0221/18/11/c11003","DOIUrl":null,"url":null,"abstract":"Abstract Two-dimensional X-ray inspection systems are widely used in aviation security applications; however, they have inherent limitations in recognizing the three-dimensional (3D) shapes of hidden objects. Therefore, there is a growing demand for the implementation of advanced 3D X-ray inspection systems at airports for more accurate detection of threats in luggage and personal belongings. In this study, we designed a new stationary computed tomography (CT) baggage scanner with π -angle sparsity (i.e., 20 pairs of X-ray sources and line detectors were placed within a scan angle of 180°) and compressed sensing (CS)-based reconstruction, and implemented a dual-energy material decomposition (DEMD) technique in the proposed system to separate soft and dense materials of an examined object to enhance threat detection. To validate the efficacy of the proposed approach (CS/180°/P20), we conducted a feasibility study using numerical simulation before its practical implementation. Polychromatic projections were emulated at X-ray tube voltages of 60 and 140 kV p , and DEMD was applied to the projections prior to CT reconstruction. Conventional and dual-energy CT images were reconstructed using both standard filtered-backprojection (FBP) and state-of-the-art CS-based algorithms to compare the image quality. According to our simulation results, the CS-reconstructed images were almost unaffected by the clearly evident streak artifacts on the FBP-reconstructed images because of the use of 20 extreme sparse-view projections, and the image quality of the dual-energy CT images obtained using the proposed CT configuration was similar to that obtained using the conventional CT configuration with 720 dense projections, indicating the efficacy of the proposed approach. Consequently, high-quality dual-energy CT images of soft and dense materials were successfully obtained using the proposed stationary CT configuration.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"10 4","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of dual-energy material decomposition technique in stationary CT baggage scanner withπ-angle sparsity for enhancing threat detection\",\"authors\":\"Jiyong Shim, Youngjo Kim, Hyesun Yang, Hyosung Cho, Kwangyun Choi\",\"doi\":\"10.1088/1748-0221/18/11/c11003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Two-dimensional X-ray inspection systems are widely used in aviation security applications; however, they have inherent limitations in recognizing the three-dimensional (3D) shapes of hidden objects. Therefore, there is a growing demand for the implementation of advanced 3D X-ray inspection systems at airports for more accurate detection of threats in luggage and personal belongings. In this study, we designed a new stationary computed tomography (CT) baggage scanner with π -angle sparsity (i.e., 20 pairs of X-ray sources and line detectors were placed within a scan angle of 180°) and compressed sensing (CS)-based reconstruction, and implemented a dual-energy material decomposition (DEMD) technique in the proposed system to separate soft and dense materials of an examined object to enhance threat detection. To validate the efficacy of the proposed approach (CS/180°/P20), we conducted a feasibility study using numerical simulation before its practical implementation. Polychromatic projections were emulated at X-ray tube voltages of 60 and 140 kV p , and DEMD was applied to the projections prior to CT reconstruction. Conventional and dual-energy CT images were reconstructed using both standard filtered-backprojection (FBP) and state-of-the-art CS-based algorithms to compare the image quality. According to our simulation results, the CS-reconstructed images were almost unaffected by the clearly evident streak artifacts on the FBP-reconstructed images because of the use of 20 extreme sparse-view projections, and the image quality of the dual-energy CT images obtained using the proposed CT configuration was similar to that obtained using the conventional CT configuration with 720 dense projections, indicating the efficacy of the proposed approach. Consequently, high-quality dual-energy CT images of soft and dense materials were successfully obtained using the proposed stationary CT configuration.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"10 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/11/c11003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/11/c11003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Implementation of dual-energy material decomposition technique in stationary CT baggage scanner withπ-angle sparsity for enhancing threat detection
Abstract Two-dimensional X-ray inspection systems are widely used in aviation security applications; however, they have inherent limitations in recognizing the three-dimensional (3D) shapes of hidden objects. Therefore, there is a growing demand for the implementation of advanced 3D X-ray inspection systems at airports for more accurate detection of threats in luggage and personal belongings. In this study, we designed a new stationary computed tomography (CT) baggage scanner with π -angle sparsity (i.e., 20 pairs of X-ray sources and line detectors were placed within a scan angle of 180°) and compressed sensing (CS)-based reconstruction, and implemented a dual-energy material decomposition (DEMD) technique in the proposed system to separate soft and dense materials of an examined object to enhance threat detection. To validate the efficacy of the proposed approach (CS/180°/P20), we conducted a feasibility study using numerical simulation before its practical implementation. Polychromatic projections were emulated at X-ray tube voltages of 60 and 140 kV p , and DEMD was applied to the projections prior to CT reconstruction. Conventional and dual-energy CT images were reconstructed using both standard filtered-backprojection (FBP) and state-of-the-art CS-based algorithms to compare the image quality. According to our simulation results, the CS-reconstructed images were almost unaffected by the clearly evident streak artifacts on the FBP-reconstructed images because of the use of 20 extreme sparse-view projections, and the image quality of the dual-energy CT images obtained using the proposed CT configuration was similar to that obtained using the conventional CT configuration with 720 dense projections, indicating the efficacy of the proposed approach. Consequently, high-quality dual-energy CT images of soft and dense materials were successfully obtained using the proposed stationary CT configuration.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.