{"title":"动态时空随机波动模型及其在环境风险中的应用","authors":"Philipp Otto, Osman Doğan, Süleyman Taşpınar","doi":"10.1016/j.ecosta.2023.11.002","DOIUrl":null,"url":null,"abstract":"A dynamic spatiotemporal stochastic volatility (SV) model is introduced, incorporating explicit terms accounting for spatial, temporal, and spatiotemporal spillover effects. Alongside these features, the model encompasses time-invariant site-specific factors, allowing for differentiation in volatility levels across locations. The statistical properties of an outcome variable within this model framework are examined, revealing the induction of spatial dependence in the outcome variable. Additionally, a Bayesian estimation procedure employing the Markov Chain Monte Carlo (MCMC) approach, complemented by a suitable data transformation, is presented. Simulation experiments are conducted to assess the performance of the proposed Bayesian estimator. Subsequently, the model is applied in the domain of environmental risk modeling, addressing the scarcity of empirical studies in this field. The significance of climate variation studies is emphasized, illustrated by an analysis of local air quality in Northern Italy during 2021, which underscores pronounced spatial and temporal clusters and increased uncertainties/risks during the winter season compared to the summer season.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"5 4","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dynamic Spatiotemporal Stochastic Volatility Model with an Application to Environmental Risks\",\"authors\":\"Philipp Otto, Osman Doğan, Süleyman Taşpınar\",\"doi\":\"10.1016/j.ecosta.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic spatiotemporal stochastic volatility (SV) model is introduced, incorporating explicit terms accounting for spatial, temporal, and spatiotemporal spillover effects. Alongside these features, the model encompasses time-invariant site-specific factors, allowing for differentiation in volatility levels across locations. The statistical properties of an outcome variable within this model framework are examined, revealing the induction of spatial dependence in the outcome variable. Additionally, a Bayesian estimation procedure employing the Markov Chain Monte Carlo (MCMC) approach, complemented by a suitable data transformation, is presented. Simulation experiments are conducted to assess the performance of the proposed Bayesian estimator. Subsequently, the model is applied in the domain of environmental risk modeling, addressing the scarcity of empirical studies in this field. The significance of climate variation studies is emphasized, illustrated by an analysis of local air quality in Northern Italy during 2021, which underscores pronounced spatial and temporal clusters and increased uncertainties/risks during the winter season compared to the summer season.\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"5 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecosta.2023.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2023.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
A Dynamic Spatiotemporal Stochastic Volatility Model with an Application to Environmental Risks
A dynamic spatiotemporal stochastic volatility (SV) model is introduced, incorporating explicit terms accounting for spatial, temporal, and spatiotemporal spillover effects. Alongside these features, the model encompasses time-invariant site-specific factors, allowing for differentiation in volatility levels across locations. The statistical properties of an outcome variable within this model framework are examined, revealing the induction of spatial dependence in the outcome variable. Additionally, a Bayesian estimation procedure employing the Markov Chain Monte Carlo (MCMC) approach, complemented by a suitable data transformation, is presented. Simulation experiments are conducted to assess the performance of the proposed Bayesian estimator. Subsequently, the model is applied in the domain of environmental risk modeling, addressing the scarcity of empirical studies in this field. The significance of climate variation studies is emphasized, illustrated by an analysis of local air quality in Northern Italy during 2021, which underscores pronounced spatial and temporal clusters and increased uncertainties/risks during the winter season compared to the summer season.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.