{"title":"约束候选黑洞的二元性:Gaia BH1和Gaia BH2的概念验证研究","authors":"Toshinori 利憲 Hayashi 林, Yasushi 靖 Suto 須藤, Alessandro A. 虎似 Trani 三努郎","doi":"10.3847/1538-4357/acf4f6","DOIUrl":null,"url":null,"abstract":"Abstract Nearly a hundred binary black holes (BBHs) have been discovered with gravitational-wave signals emitted at their merging events. Thus, it is quite natural to expect that significantly more abundant BBHs with wider separations remain undetected in the Universe or even in our Galaxy. We consider a possibility that star–BH binary candidates may indeed host an inner BBH instead of a single BH. We present a detailed feasibility study of constraining the binarity of the currently available two targets, Gaia BH1 and Gaia BH2. Specifically, we examine three types of radial velocity (RV) modulations of a tertiary star in star–BBH triple systems; short-term RV modulations induced by the inner BBH, long-term RV modulations induced by the nodal precession, and long-term RV modulations induced by the von Zeipel-Kozai–Lidov oscillations. Direct three-body simulations combined with approximate analytic models reveal that the Gaia BH1 system may exhibit observable signatures of the hidden inner BBH if it exists at all. The methodology that we examine here is quite generic and is expected to be readily applicable to future star–BH binary candidates in a straightforward manner.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constraining the Binarity of Black Hole Candidates: A Proof-of-concept Study of Gaia BH1 and Gaia BH2\",\"authors\":\"Toshinori 利憲 Hayashi 林, Yasushi 靖 Suto 須藤, Alessandro A. 虎似 Trani 三努郎\",\"doi\":\"10.3847/1538-4357/acf4f6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nearly a hundred binary black holes (BBHs) have been discovered with gravitational-wave signals emitted at their merging events. Thus, it is quite natural to expect that significantly more abundant BBHs with wider separations remain undetected in the Universe or even in our Galaxy. We consider a possibility that star–BH binary candidates may indeed host an inner BBH instead of a single BH. We present a detailed feasibility study of constraining the binarity of the currently available two targets, Gaia BH1 and Gaia BH2. Specifically, we examine three types of radial velocity (RV) modulations of a tertiary star in star–BBH triple systems; short-term RV modulations induced by the inner BBH, long-term RV modulations induced by the nodal precession, and long-term RV modulations induced by the von Zeipel-Kozai–Lidov oscillations. Direct three-body simulations combined with approximate analytic models reveal that the Gaia BH1 system may exhibit observable signatures of the hidden inner BBH if it exists at all. The methodology that we examine here is quite generic and is expected to be readily applicable to future star–BH binary candidates in a straightforward manner.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acf4f6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf4f6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Constraining the Binarity of Black Hole Candidates: A Proof-of-concept Study of Gaia BH1 and Gaia BH2
Abstract Nearly a hundred binary black holes (BBHs) have been discovered with gravitational-wave signals emitted at their merging events. Thus, it is quite natural to expect that significantly more abundant BBHs with wider separations remain undetected in the Universe or even in our Galaxy. We consider a possibility that star–BH binary candidates may indeed host an inner BBH instead of a single BH. We present a detailed feasibility study of constraining the binarity of the currently available two targets, Gaia BH1 and Gaia BH2. Specifically, we examine three types of radial velocity (RV) modulations of a tertiary star in star–BBH triple systems; short-term RV modulations induced by the inner BBH, long-term RV modulations induced by the nodal precession, and long-term RV modulations induced by the von Zeipel-Kozai–Lidov oscillations. Direct three-body simulations combined with approximate analytic models reveal that the Gaia BH1 system may exhibit observable signatures of the hidden inner BBH if it exists at all. The methodology that we examine here is quite generic and is expected to be readily applicable to future star–BH binary candidates in a straightforward manner.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.