{"title":"Lorentz-Minkowski 4-空间中类光曲面的Weierstrass表示","authors":"Davor DEVALD, Z. MİLİN SİPUS","doi":"10.36890/iejg.1272924","DOIUrl":null,"url":null,"abstract":"We present a Weierstrass-type representation formula which locally represents every regular two-dimensional lightlike surface in Lorentz-Minkowski 4-Space $\\mathbb{M}^4$ by three dual functions $(\\rho,f,g)$ and generalizes the representation for regular lightlike surfaces in $\\mathbb{M}^3$. We give necessary and sufficient conditions on the functions $\\rho$, $f$, $g$ for the surface to be minimal, ruled or $l$-minimal. For ruled lightlike surfaces, we give necessary and sufficient conditions for the representation itself to be ruled. Furthermore, we give a result on totally geodesic half-lightlike surfaces which holds only in $\\mathbb{M}^4$.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"222 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space\",\"authors\":\"Davor DEVALD, Z. MİLİN SİPUS\",\"doi\":\"10.36890/iejg.1272924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Weierstrass-type representation formula which locally represents every regular two-dimensional lightlike surface in Lorentz-Minkowski 4-Space $\\\\mathbb{M}^4$ by three dual functions $(\\\\rho,f,g)$ and generalizes the representation for regular lightlike surfaces in $\\\\mathbb{M}^3$. We give necessary and sufficient conditions on the functions $\\\\rho$, $f$, $g$ for the surface to be minimal, ruled or $l$-minimal. For ruled lightlike surfaces, we give necessary and sufficient conditions for the representation itself to be ruled. Furthermore, we give a result on totally geodesic half-lightlike surfaces which holds only in $\\\\mathbb{M}^4$.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1272924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1272924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给出了一个weierstrass型的表示公式,该公式用三个对偶函数$(\rho,f,g)$局部表示了Lorentz-Minkowski 4- space $\mathbb{M}^4$中的每一个正则二维类光曲面,并推广了$\mathbb{M}^3$中的正则类光曲面的表示。给出了函数$\rho$, $f$, $g$使曲面极小、直棱或$l$-极小的充分必要条件。对于直纹类光曲面,给出了表象本身被直纹的充分必要条件。此外,我们给出了只在$\mathbb{M}^4$中成立的全测地线半类光曲面的结果。
Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space
We present a Weierstrass-type representation formula which locally represents every regular two-dimensional lightlike surface in Lorentz-Minkowski 4-Space $\mathbb{M}^4$ by three dual functions $(\rho,f,g)$ and generalizes the representation for regular lightlike surfaces in $\mathbb{M}^3$. We give necessary and sufficient conditions on the functions $\rho$, $f$, $g$ for the surface to be minimal, ruled or $l$-minimal. For ruled lightlike surfaces, we give necessary and sufficient conditions for the representation itself to be ruled. Furthermore, we give a result on totally geodesic half-lightlike surfaces which holds only in $\mathbb{M}^4$.