{"title":"利用深度学习模型的性能评价进行废弃物分类","authors":"Israa Badr Al-Mashhadani","doi":"10.1515/jisys-2023-0064","DOIUrl":null,"url":null,"abstract":"Abstract Waste classification is the issue of sorting rubbish into valuable categories for efficient waste management. Problems arise from issues such as individual ignorance or inactivity and more overt issues like pollution in the environment, lack of resources, or a malfunctioning system. Education, established behaviors, an improved infrastructure, technology, and legislative incentives to promote effective trash sorting and management are all necessary for a solution to be implemented. For solid waste management and recycling efforts to be successful, waste materials must be sorted appropriately. This study evaluates the effectiveness of several deep learning (DL) models for the challenge of waste material classification. The focus will be on finding the best DL technique for solid waste classification. This study extensively compares several DL architectures (Resnet50, GoogleNet, InceptionV3, and Xception). Images of various types of trash are amassed and cleaned up to form a dataset. Accuracy, precision, recall, and F 1 score are only a few measures used to assess the performance of the many DL models trained and tested on this dataset. ResNet50 showed impressive performance in waste material classification, with 95% accuracy, 95.4% precision, 95% recall, and 94.8% in the F 1 score, with only two incorrect categories in the glass class. All classes are correctly classified with an F 1 score of 100% due to Inception V3’s remarkable accuracy, precision, recall, and F 1 score. Xception’s classification accuracy was excellent (100%), with a few difficulties in the glass and trash categories. With a good 90.78% precision, 100% recall, and 89.81% F 1 score, GoogleNet performed admirably. This study highlights the significance of using models based on DL for categorizing trash. The results open the way for enhanced trash sorting and recycling operations, contributing to an economically and ecologically friendly future.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"26 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waste material classification using performance evaluation of deep learning models\",\"authors\":\"Israa Badr Al-Mashhadani\",\"doi\":\"10.1515/jisys-2023-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Waste classification is the issue of sorting rubbish into valuable categories for efficient waste management. Problems arise from issues such as individual ignorance or inactivity and more overt issues like pollution in the environment, lack of resources, or a malfunctioning system. Education, established behaviors, an improved infrastructure, technology, and legislative incentives to promote effective trash sorting and management are all necessary for a solution to be implemented. For solid waste management and recycling efforts to be successful, waste materials must be sorted appropriately. This study evaluates the effectiveness of several deep learning (DL) models for the challenge of waste material classification. The focus will be on finding the best DL technique for solid waste classification. This study extensively compares several DL architectures (Resnet50, GoogleNet, InceptionV3, and Xception). Images of various types of trash are amassed and cleaned up to form a dataset. Accuracy, precision, recall, and F 1 score are only a few measures used to assess the performance of the many DL models trained and tested on this dataset. ResNet50 showed impressive performance in waste material classification, with 95% accuracy, 95.4% precision, 95% recall, and 94.8% in the F 1 score, with only two incorrect categories in the glass class. All classes are correctly classified with an F 1 score of 100% due to Inception V3’s remarkable accuracy, precision, recall, and F 1 score. Xception’s classification accuracy was excellent (100%), with a few difficulties in the glass and trash categories. With a good 90.78% precision, 100% recall, and 89.81% F 1 score, GoogleNet performed admirably. This study highlights the significance of using models based on DL for categorizing trash. The results open the way for enhanced trash sorting and recycling operations, contributing to an economically and ecologically friendly future.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2023-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Waste material classification using performance evaluation of deep learning models
Abstract Waste classification is the issue of sorting rubbish into valuable categories for efficient waste management. Problems arise from issues such as individual ignorance or inactivity and more overt issues like pollution in the environment, lack of resources, or a malfunctioning system. Education, established behaviors, an improved infrastructure, technology, and legislative incentives to promote effective trash sorting and management are all necessary for a solution to be implemented. For solid waste management and recycling efforts to be successful, waste materials must be sorted appropriately. This study evaluates the effectiveness of several deep learning (DL) models for the challenge of waste material classification. The focus will be on finding the best DL technique for solid waste classification. This study extensively compares several DL architectures (Resnet50, GoogleNet, InceptionV3, and Xception). Images of various types of trash are amassed and cleaned up to form a dataset. Accuracy, precision, recall, and F 1 score are only a few measures used to assess the performance of the many DL models trained and tested on this dataset. ResNet50 showed impressive performance in waste material classification, with 95% accuracy, 95.4% precision, 95% recall, and 94.8% in the F 1 score, with only two incorrect categories in the glass class. All classes are correctly classified with an F 1 score of 100% due to Inception V3’s remarkable accuracy, precision, recall, and F 1 score. Xception’s classification accuracy was excellent (100%), with a few difficulties in the glass and trash categories. With a good 90.78% precision, 100% recall, and 89.81% F 1 score, GoogleNet performed admirably. This study highlights the significance of using models based on DL for categorizing trash. The results open the way for enhanced trash sorting and recycling operations, contributing to an economically and ecologically friendly future.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.