Salah Al-Zubaidi, Jaharah A. Ghani, Che Hassan Che Haron, Adnan Naji Jameel Al-Tamimi, M. N. Mohammed, Alessandro Ruggiero, Samaher M. Sarhan, Oday I. Abdullah, Mohd Shukor Salleh
{"title":"综合智能模型预测Ti6Al4V无涂层刀具端面粗糙度的性能研究","authors":"Salah Al-Zubaidi, Jaharah A. Ghani, Che Hassan Che Haron, Adnan Naji Jameel Al-Tamimi, M. N. Mohammed, Alessandro Ruggiero, Samaher M. Sarhan, Oday I. Abdullah, Mohd Shukor Salleh","doi":"10.1515/jmbm-2022-0300","DOIUrl":null,"url":null,"abstract":"Abstract Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GSA). Full-factorial design of the experiment with L27 orthogonal array was applied, and three end-milling parameters (cutting speed, feed rate, and axial depth of cut) with three levels were selected (50, 77.5, and 105 m/min; 0.1, 0.15, and 0.2 mm/tooth; and 1, 1.5, and 2 mm) and investigated to show their influence on the obtained surface roughness. The results revealed that the surface roughness is significantly affected by the feed rate followed by the axial depth. A 0.49 µm was produced as a minimum surface roughness at the optimized parameters of 105 m/min, 0.1 mm/tooth, and 1 mm. On the other hand, a neural network having a single hidden layer with 1–20 hidden neurons, 3 input neurons, and 1 output neuron was trained with both PSO and PSO–GSA algorithms. The hybrid BPNN–PSO–GSA model showed its superiority over the BPNN–PSO model in terms of the minimum mean square error (MSE) that was calculated during the testing stage. The best BPNN–PSO–GSA hybrid model was the 3–18–1 structure, which reached the best testing MSE of 3.8 × 10 −11 against 2.42 × 10 −5 of the 3–8–1 BPNN–PSO hybrid model.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"2 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the performance of integrated intelligent models to predict the roughness of Ti6Al4V end-milled surface with uncoated cutting tool\",\"authors\":\"Salah Al-Zubaidi, Jaharah A. Ghani, Che Hassan Che Haron, Adnan Naji Jameel Al-Tamimi, M. N. Mohammed, Alessandro Ruggiero, Samaher M. Sarhan, Oday I. Abdullah, Mohd Shukor Salleh\",\"doi\":\"10.1515/jmbm-2022-0300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GSA). Full-factorial design of the experiment with L27 orthogonal array was applied, and three end-milling parameters (cutting speed, feed rate, and axial depth of cut) with three levels were selected (50, 77.5, and 105 m/min; 0.1, 0.15, and 0.2 mm/tooth; and 1, 1.5, and 2 mm) and investigated to show their influence on the obtained surface roughness. The results revealed that the surface roughness is significantly affected by the feed rate followed by the axial depth. A 0.49 µm was produced as a minimum surface roughness at the optimized parameters of 105 m/min, 0.1 mm/tooth, and 1 mm. On the other hand, a neural network having a single hidden layer with 1–20 hidden neurons, 3 input neurons, and 1 output neuron was trained with both PSO and PSO–GSA algorithms. The hybrid BPNN–PSO–GSA model showed its superiority over the BPNN–PSO model in terms of the minimum mean square error (MSE) that was calculated during the testing stage. The best BPNN–PSO–GSA hybrid model was the 3–18–1 structure, which reached the best testing MSE of 3.8 × 10 −11 against 2.42 × 10 −5 of the 3–8–1 BPNN–PSO hybrid model.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of the performance of integrated intelligent models to predict the roughness of Ti6Al4V end-milled surface with uncoated cutting tool
Abstract Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GSA). Full-factorial design of the experiment with L27 orthogonal array was applied, and three end-milling parameters (cutting speed, feed rate, and axial depth of cut) with three levels were selected (50, 77.5, and 105 m/min; 0.1, 0.15, and 0.2 mm/tooth; and 1, 1.5, and 2 mm) and investigated to show their influence on the obtained surface roughness. The results revealed that the surface roughness is significantly affected by the feed rate followed by the axial depth. A 0.49 µm was produced as a minimum surface roughness at the optimized parameters of 105 m/min, 0.1 mm/tooth, and 1 mm. On the other hand, a neural network having a single hidden layer with 1–20 hidden neurons, 3 input neurons, and 1 output neuron was trained with both PSO and PSO–GSA algorithms. The hybrid BPNN–PSO–GSA model showed its superiority over the BPNN–PSO model in terms of the minimum mean square error (MSE) that was calculated during the testing stage. The best BPNN–PSO–GSA hybrid model was the 3–18–1 structure, which reached the best testing MSE of 3.8 × 10 −11 against 2.42 × 10 −5 of the 3–8–1 BPNN–PSO hybrid model.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.