局部投影、自相关和效率

IF 1.9 3区 经济学 Q2 ECONOMICS
Amaze Lusompa
{"title":"局部投影、自相关和效率","authors":"Amaze Lusompa","doi":"10.3982/qe1988","DOIUrl":null,"url":null,"abstract":"It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says that LP have to be estimated by OLS and that GLS is not possible because the autocorrelation process is unknown and/or because the GLS estimator would be inconsistent. I show that the autocorrelation process of LP can be written as a Vector Moving Average (VMA) process of the Wold errors and impulse responses and that autocorrelation can be corrected for using a consistent GLS estimator. Monte Carlo simulations show that estimating LP with GLS can lead to more efficient estimates.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"26 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local projections, autocorrelation, and efficiency\",\"authors\":\"Amaze Lusompa\",\"doi\":\"10.3982/qe1988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says that LP have to be estimated by OLS and that GLS is not possible because the autocorrelation process is unknown and/or because the GLS estimator would be inconsistent. I show that the autocorrelation process of LP can be written as a Vector Moving Average (VMA) process of the Wold errors and impulse responses and that autocorrelation can be corrected for using a consistent GLS estimator. Monte Carlo simulations show that estimating LP with GLS can lead to more efficient estimates.\",\"PeriodicalId\":46811,\"journal\":{\"name\":\"Quantitative Economics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3982/qe1988\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3982/qe1988","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,局部投影残差是自相关的。传统观点认为LP必须通过OLS来估计,而GLS是不可能的,因为自相关过程是未知的和/或因为GLS估计器是不一致的。我表明LP的自相关过程可以写成Wold误差和脉冲响应的矢量移动平均(VMA)过程,并且可以使用一致的GLS估计器来纠正自相关。蒙特卡罗模拟表明,用GLS估计LP可以得到更有效的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local projections, autocorrelation, and efficiency
It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says that LP have to be estimated by OLS and that GLS is not possible because the autocorrelation process is unknown and/or because the GLS estimator would be inconsistent. I show that the autocorrelation process of LP can be written as a Vector Moving Average (VMA) process of the Wold errors and impulse responses and that autocorrelation can be corrected for using a consistent GLS estimator. Monte Carlo simulations show that estimating LP with GLS can lead to more efficient estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信