{"title":"通过拓扑度,求解变指数问题的特征值问题","authors":"Raúl Manásevich, Satoshi Tanaka","doi":"10.3934/dcds.2023134","DOIUrl":null,"url":null,"abstract":"The problem$ \\begin{equation*} \\left\\{ \\begin{array}{l} -\\Delta_{p(|x|)} u - \\Delta_{q} u = \\lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \\quad \\mbox{in} \\ \\mathcal B , \\\\ u = 0 \\quad \\mbox{on} \\ \\partial \\mathcal B \\end{array} \\right. \\end{equation*} $is considered, where $ \\mathcal B = \\{ x \\in \\mathbb{R}^N : |x|<R \\} $, $ N \\ge 1 $, $ \\Delta_{p(|x|)} u = \\mbox{div} (|\\nabla u|^{p(|x|)-2}\\nabla u) $, $ p(r) $ is continuous and satisfies $ p(r)>1 $ on $ [0, R] $, $ \\Delta_{q} u = \\mbox{div}(|\\nabla u|^{q-2}\\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \\lambda>\\lambda_1(q) $, where $ \\lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"5 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigenvalue problem for a variable exponent problem, via topological degree\",\"authors\":\"Raúl Manásevich, Satoshi Tanaka\",\"doi\":\"10.3934/dcds.2023134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{l} -\\\\Delta_{p(|x|)} u - \\\\Delta_{q} u = \\\\lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \\\\quad \\\\mbox{in} \\\\ \\\\mathcal B , \\\\\\\\ u = 0 \\\\quad \\\\mbox{on} \\\\ \\\\partial \\\\mathcal B \\\\end{array} \\\\right. \\\\end{equation*} $is considered, where $ \\\\mathcal B = \\\\{ x \\\\in \\\\mathbb{R}^N : |x|<R \\\\} $, $ N \\\\ge 1 $, $ \\\\Delta_{p(|x|)} u = \\\\mbox{div} (|\\\\nabla u|^{p(|x|)-2}\\\\nabla u) $, $ p(r) $ is continuous and satisfies $ p(r)>1 $ on $ [0, R] $, $ \\\\Delta_{q} u = \\\\mbox{div}(|\\\\nabla u|^{q-2}\\\\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \\\\lambda>\\\\lambda_1(q) $, where $ \\\\lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023134\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
考虑$ \begin{equation*} \left\{ \begin{array}{l} -\Delta_{p(|x|)} u - \Delta_{q} u = \lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \quad \mbox{in} \ \mathcal B , \\ u = 0 \quad \mbox{on} \ \partial \mathcal B \end{array} \right. \end{equation*} $问题,其中$ \mathcal B = \{ x \in \mathbb{R}^N : |x|<R \} $、$ N \ge 1 $、$ \Delta_{p(|x|)} u = \mbox{div} (|\nabla u|^{p(|x|)-2}\nabla u) $、$ p(r) $是连续的,满足$ [0, R] $、$ \Delta_{q} u = \mbox{div}(|\nabla u|^{q-2}\nabla u) $、$ q>1 $上的$ p(r)>1 $。证明了每个$ \lambda>\lambda_1(q) $正解的存在性,其中$ \lambda_1(q) $是$ q $ -拉普拉斯算子的第一个特征值。
An eigenvalue problem for a variable exponent problem, via topological degree
The problem$ \begin{equation*} \left\{ \begin{array}{l} -\Delta_{p(|x|)} u - \Delta_{q} u = \lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \quad \mbox{in} \ \mathcal B , \\ u = 0 \quad \mbox{on} \ \partial \mathcal B \end{array} \right. \end{equation*} $is considered, where $ \mathcal B = \{ x \in \mathbb{R}^N : |x|1 $ on $ [0, R] $, $ \Delta_{q} u = \mbox{div}(|\nabla u|^{q-2}\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \lambda>\lambda_1(q) $, where $ \lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.