{"title":"通过拓扑度,求解变指数问题的特征值问题","authors":"Raúl Manásevich, Satoshi Tanaka","doi":"10.3934/dcds.2023134","DOIUrl":null,"url":null,"abstract":"The problem$ \\begin{equation*} \\left\\{ \\begin{array}{l} -\\Delta_{p(|x|)} u - \\Delta_{q} u = \\lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \\quad \\mbox{in} \\ \\mathcal B , \\\\ u = 0 \\quad \\mbox{on} \\ \\partial \\mathcal B \\end{array} \\right. \\end{equation*} $is considered, where $ \\mathcal B = \\{ x \\in \\mathbb{R}^N : |x|<R \\} $, $ N \\ge 1 $, $ \\Delta_{p(|x|)} u = \\mbox{div} (|\\nabla u|^{p(|x|)-2}\\nabla u) $, $ p(r) $ is continuous and satisfies $ p(r)>1 $ on $ [0, R] $, $ \\Delta_{q} u = \\mbox{div}(|\\nabla u|^{q-2}\\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \\lambda>\\lambda_1(q) $, where $ \\lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigenvalue problem for a variable exponent problem, via topological degree\",\"authors\":\"Raúl Manásevich, Satoshi Tanaka\",\"doi\":\"10.3934/dcds.2023134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{l} -\\\\Delta_{p(|x|)} u - \\\\Delta_{q} u = \\\\lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \\\\quad \\\\mbox{in} \\\\ \\\\mathcal B , \\\\\\\\ u = 0 \\\\quad \\\\mbox{on} \\\\ \\\\partial \\\\mathcal B \\\\end{array} \\\\right. \\\\end{equation*} $is considered, where $ \\\\mathcal B = \\\\{ x \\\\in \\\\mathbb{R}^N : |x|<R \\\\} $, $ N \\\\ge 1 $, $ \\\\Delta_{p(|x|)} u = \\\\mbox{div} (|\\\\nabla u|^{p(|x|)-2}\\\\nabla u) $, $ p(r) $ is continuous and satisfies $ p(r)>1 $ on $ [0, R] $, $ \\\\Delta_{q} u = \\\\mbox{div}(|\\\\nabla u|^{q-2}\\\\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \\\\lambda>\\\\lambda_1(q) $, where $ \\\\lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023134\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
考虑$ \begin{equation*} \left\{ \begin{array}{l} -\Delta_{p(|x|)} u - \Delta_{q} u = \lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \quad \mbox{in} \ \mathcal B , \\ u = 0 \quad \mbox{on} \ \partial \mathcal B \end{array} \right. \end{equation*} $问题,其中$ \mathcal B = \{ x \in \mathbb{R}^N : |x|<R \} $、$ N \ge 1 $、$ \Delta_{p(|x|)} u = \mbox{div} (|\nabla u|^{p(|x|)-2}\nabla u) $、$ p(r) $是连续的,满足$ [0, R] $、$ \Delta_{q} u = \mbox{div}(|\nabla u|^{q-2}\nabla u) $、$ q>1 $上的$ p(r)>1 $。证明了每个$ \lambda>\lambda_1(q) $正解的存在性,其中$ \lambda_1(q) $是$ q $ -拉普拉斯算子的第一个特征值。
An eigenvalue problem for a variable exponent problem, via topological degree
The problem$ \begin{equation*} \left\{ \begin{array}{l} -\Delta_{p(|x|)} u - \Delta_{q} u = \lambda (|u|^{p(|x|)-2}u + |u|^{q-2}u) \quad \mbox{in} \ \mathcal B , \\ u = 0 \quad \mbox{on} \ \partial \mathcal B \end{array} \right. \end{equation*} $is considered, where $ \mathcal B = \{ x \in \mathbb{R}^N : |x|1 $ on $ [0, R] $, $ \Delta_{q} u = \mbox{div}(|\nabla u|^{q-2}\nabla u) $, and $ q>1 $. The existence of positive solutions is proved for every $ \lambda>\lambda_1(q) $, where $ \lambda_1(q) $ is the first eigenvalue of $ q $-Laplacian.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.