Sobolev空间中可压缩磁流体边界层方程的长时间适定性

IF 1.1 3区 数学 Q1 MATHEMATICS
Shengxin Li, Feng Xie
{"title":"Sobolev空间中可压缩磁流体边界层方程的长时间适定性","authors":"Shengxin Li, Feng Xie","doi":"10.3934/dcds.2023133","DOIUrl":null,"url":null,"abstract":"In this paper we consider the long time well-posedness of solutions to two-dimensional compressible magnetohydrodynamic (MHD) boundary layer equations. When the initial data is a small perturbation of a steady solution with size of $ \\varepsilon $, then the lifespan of solutions in Sobolev spaces is proved to be greater than $ \\varepsilon^{-\\frac43} $. And such a result can be extended to the case that both initial data and far-field state are small perturbations around the steady states. Moreover, it holds true for both isentropic and non-isentropic magnetohydrodynamic boundary layer equations.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"152 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time well-posedness of compressible magnetohydrodynamic boundary layer equations in Sobolev spaces\",\"authors\":\"Shengxin Li, Feng Xie\",\"doi\":\"10.3934/dcds.2023133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the long time well-posedness of solutions to two-dimensional compressible magnetohydrodynamic (MHD) boundary layer equations. When the initial data is a small perturbation of a steady solution with size of $ \\\\varepsilon $, then the lifespan of solutions in Sobolev spaces is proved to be greater than $ \\\\varepsilon^{-\\\\frac43} $. And such a result can be extended to the case that both initial data and far-field state are small perturbations around the steady states. Moreover, it holds true for both isentropic and non-isentropic magnetohydrodynamic boundary layer equations.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023133\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑二维可压缩磁流体边界层方程解的长时间适定性。当初始数据是大小为$ \varepsilon $的稳定解的小扰动时,则证明了Sobolev空间中解的寿命大于$ \varepsilon^{-\frac43} $。这一结果可以推广到初始数据和远场状态都是围绕稳态的小扰动的情况。此外,它对等熵和非等熵磁流体边界层方程都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time well-posedness of compressible magnetohydrodynamic boundary layer equations in Sobolev spaces
In this paper we consider the long time well-posedness of solutions to two-dimensional compressible magnetohydrodynamic (MHD) boundary layer equations. When the initial data is a small perturbation of a steady solution with size of $ \varepsilon $, then the lifespan of solutions in Sobolev spaces is proved to be greater than $ \varepsilon^{-\frac43} $. And such a result can be extended to the case that both initial data and far-field state are small perturbations around the steady states. Moreover, it holds true for both isentropic and non-isentropic magnetohydrodynamic boundary layer equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信