Gary W. Marek, Steve Evett, Thomas Henry Marek, Dana Porter, Robert C. Schwartz
{"title":"常规和井下TDR土壤水分传感器在粘壤土灌溉调度中的现场评价","authors":"Gary W. Marek, Steve Evett, Thomas Henry Marek, Dana Porter, Robert C. Schwartz","doi":"10.13031/aea.15574","DOIUrl":null,"url":null,"abstract":"Highlights Soil profile water content derived from Acclima TDR-315™ sensors approximated those from NMM measurements. Soil profile water content from Campbell Scientific SoilVUE™10 sensors grossly underestimated those from the NMM. VWC values from SoilVUE10 sensors were consistently less than those reported by the TDR-315 sensors at all depths. These findings do not support SoilVUE10 use for irrigation scheduling in clay loam soils. Abstract. A field study was performed to evaluate the efficacy of two commercially available time domain reflectometry (TDR) soil water sensors for irrigation scheduling in a clay loam soil near Bushland, Texas. SoilVUE10 (Campbell Scientific Inc., Logan, Utah) and TDR-315 (Acclima Inc., Meridian, Idaho) sensors were installed within 30 cm of neutron moisture meter (NMM) access tubes in a research field planted to corn (Zea mays L) in 2020 and irrigated by a center pivot sprinkler system. Irrigation treatments included 50%, 75%, and 100% of evapotranspiration (ET) replacement with two access tubes installed in each plot, totaling six sensor evaluation sites. Semiweekly measurements with a field-calibrated NMM were used to monitor soil water status and schedule irrigation throughout the growing season. Soil profile water content values integrated over the surface to 1.1-m depth range were derived from SoilVUE10 and vertically distributed arrays of Acclima TDR-315 sensors installed at equivalent depths and were compared with those from NMM data. Average profile soil water contents from the TDR-315 sensors trended well with those from the NMM having mean bias difference (MBD) values of -9.8, -3.1, and 8.4 mm for the 50%, 75%, and 100% treatments, respectively. In contrast, soil profile water content values from the SoilVUE10 sensors grossly underestimated those from the NMM for all irrigation treatments with MBD values of -54.4, -70.5, and -89.8 mm for the 50%, 75%, and 100% treatments, respectively. Comparisons of volumetric water content (VWC) at each of the nine depths common to both electromagnetic sensor types revealed that values from the SoilVUE10 sensors were consistently less than TDR-315 values for all irrigation treatments. Underestimation at the near surface (5 and 10 cm depths) was attributed to loss of soil to electrode contact possibly associated with clay shrinkage during periodic drying following irrigation. Although soil to electrode contact can be problematic at greater depths, the explanation for chronic underestimation of VWC was less obvious except to note that underestimation occurred immediately after installation, which indicated poor electrode-soil contact after installation despite use of manufacturer guidelines and tools. Other possible reasons include challenges for accurate estimation of soil permittivity for a measured permittivity that includes the plastic sensor body. Results from this study suggest vertically distributed arrays of TDR-315 sensors can provide profile water content values adequate for monitoring soil water status for irrigation scheduling in a clay loam soil. The chronic underestimation observed for the SoilVUE10 sensors does not support their use for water resources research and irrigation management and could lead to over irrigation. Additionally, the relatively short 1 m length is less than the rooting depth of many regional crops and thus not capable of determining percolation below the root zone. Keywords: Acclima TDR-315, Campbell Scientific SoilVUE, Irrigation scheduling, Neutron moisture meter, Semi-arid, Soil water sensors, Time domain reflectometry, Volumetric water content.","PeriodicalId":55501,"journal":{"name":"Applied Engineering in Agriculture","volume":"183 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Evaluation of Conventional and Downhole TDR Soil Water Sensors for Irrigation Scheduling in a Clay Loam Soil\",\"authors\":\"Gary W. Marek, Steve Evett, Thomas Henry Marek, Dana Porter, Robert C. Schwartz\",\"doi\":\"10.13031/aea.15574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highlights Soil profile water content derived from Acclima TDR-315™ sensors approximated those from NMM measurements. Soil profile water content from Campbell Scientific SoilVUE™10 sensors grossly underestimated those from the NMM. VWC values from SoilVUE10 sensors were consistently less than those reported by the TDR-315 sensors at all depths. These findings do not support SoilVUE10 use for irrigation scheduling in clay loam soils. Abstract. A field study was performed to evaluate the efficacy of two commercially available time domain reflectometry (TDR) soil water sensors for irrigation scheduling in a clay loam soil near Bushland, Texas. SoilVUE10 (Campbell Scientific Inc., Logan, Utah) and TDR-315 (Acclima Inc., Meridian, Idaho) sensors were installed within 30 cm of neutron moisture meter (NMM) access tubes in a research field planted to corn (Zea mays L) in 2020 and irrigated by a center pivot sprinkler system. Irrigation treatments included 50%, 75%, and 100% of evapotranspiration (ET) replacement with two access tubes installed in each plot, totaling six sensor evaluation sites. Semiweekly measurements with a field-calibrated NMM were used to monitor soil water status and schedule irrigation throughout the growing season. Soil profile water content values integrated over the surface to 1.1-m depth range were derived from SoilVUE10 and vertically distributed arrays of Acclima TDR-315 sensors installed at equivalent depths and were compared with those from NMM data. Average profile soil water contents from the TDR-315 sensors trended well with those from the NMM having mean bias difference (MBD) values of -9.8, -3.1, and 8.4 mm for the 50%, 75%, and 100% treatments, respectively. In contrast, soil profile water content values from the SoilVUE10 sensors grossly underestimated those from the NMM for all irrigation treatments with MBD values of -54.4, -70.5, and -89.8 mm for the 50%, 75%, and 100% treatments, respectively. Comparisons of volumetric water content (VWC) at each of the nine depths common to both electromagnetic sensor types revealed that values from the SoilVUE10 sensors were consistently less than TDR-315 values for all irrigation treatments. Underestimation at the near surface (5 and 10 cm depths) was attributed to loss of soil to electrode contact possibly associated with clay shrinkage during periodic drying following irrigation. Although soil to electrode contact can be problematic at greater depths, the explanation for chronic underestimation of VWC was less obvious except to note that underestimation occurred immediately after installation, which indicated poor electrode-soil contact after installation despite use of manufacturer guidelines and tools. Other possible reasons include challenges for accurate estimation of soil permittivity for a measured permittivity that includes the plastic sensor body. Results from this study suggest vertically distributed arrays of TDR-315 sensors can provide profile water content values adequate for monitoring soil water status for irrigation scheduling in a clay loam soil. The chronic underestimation observed for the SoilVUE10 sensors does not support their use for water resources research and irrigation management and could lead to over irrigation. Additionally, the relatively short 1 m length is less than the rooting depth of many regional crops and thus not capable of determining percolation below the root zone. Keywords: Acclima TDR-315, Campbell Scientific SoilVUE, Irrigation scheduling, Neutron moisture meter, Semi-arid, Soil water sensors, Time domain reflectometry, Volumetric water content.\",\"PeriodicalId\":55501,\"journal\":{\"name\":\"Applied Engineering in Agriculture\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Engineering in Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13031/aea.15574\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Engineering in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13031/aea.15574","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Field Evaluation of Conventional and Downhole TDR Soil Water Sensors for Irrigation Scheduling in a Clay Loam Soil
Highlights Soil profile water content derived from Acclima TDR-315™ sensors approximated those from NMM measurements. Soil profile water content from Campbell Scientific SoilVUE™10 sensors grossly underestimated those from the NMM. VWC values from SoilVUE10 sensors were consistently less than those reported by the TDR-315 sensors at all depths. These findings do not support SoilVUE10 use for irrigation scheduling in clay loam soils. Abstract. A field study was performed to evaluate the efficacy of two commercially available time domain reflectometry (TDR) soil water sensors for irrigation scheduling in a clay loam soil near Bushland, Texas. SoilVUE10 (Campbell Scientific Inc., Logan, Utah) and TDR-315 (Acclima Inc., Meridian, Idaho) sensors were installed within 30 cm of neutron moisture meter (NMM) access tubes in a research field planted to corn (Zea mays L) in 2020 and irrigated by a center pivot sprinkler system. Irrigation treatments included 50%, 75%, and 100% of evapotranspiration (ET) replacement with two access tubes installed in each plot, totaling six sensor evaluation sites. Semiweekly measurements with a field-calibrated NMM were used to monitor soil water status and schedule irrigation throughout the growing season. Soil profile water content values integrated over the surface to 1.1-m depth range were derived from SoilVUE10 and vertically distributed arrays of Acclima TDR-315 sensors installed at equivalent depths and were compared with those from NMM data. Average profile soil water contents from the TDR-315 sensors trended well with those from the NMM having mean bias difference (MBD) values of -9.8, -3.1, and 8.4 mm for the 50%, 75%, and 100% treatments, respectively. In contrast, soil profile water content values from the SoilVUE10 sensors grossly underestimated those from the NMM for all irrigation treatments with MBD values of -54.4, -70.5, and -89.8 mm for the 50%, 75%, and 100% treatments, respectively. Comparisons of volumetric water content (VWC) at each of the nine depths common to both electromagnetic sensor types revealed that values from the SoilVUE10 sensors were consistently less than TDR-315 values for all irrigation treatments. Underestimation at the near surface (5 and 10 cm depths) was attributed to loss of soil to electrode contact possibly associated with clay shrinkage during periodic drying following irrigation. Although soil to electrode contact can be problematic at greater depths, the explanation for chronic underestimation of VWC was less obvious except to note that underestimation occurred immediately after installation, which indicated poor electrode-soil contact after installation despite use of manufacturer guidelines and tools. Other possible reasons include challenges for accurate estimation of soil permittivity for a measured permittivity that includes the plastic sensor body. Results from this study suggest vertically distributed arrays of TDR-315 sensors can provide profile water content values adequate for monitoring soil water status for irrigation scheduling in a clay loam soil. The chronic underestimation observed for the SoilVUE10 sensors does not support their use for water resources research and irrigation management and could lead to over irrigation. Additionally, the relatively short 1 m length is less than the rooting depth of many regional crops and thus not capable of determining percolation below the root zone. Keywords: Acclima TDR-315, Campbell Scientific SoilVUE, Irrigation scheduling, Neutron moisture meter, Semi-arid, Soil water sensors, Time domain reflectometry, Volumetric water content.
期刊介绍:
This peer-reviewed journal publishes applications of engineering and technology research that address agricultural, food, and biological systems problems. Submissions must include results of practical experiences, tests, or trials presented in a manner and style that will allow easy adaptation by others; results of reviews or studies of installations or applications with substantially new or significant information not readily available in other refereed publications; or a description of successful methods of techniques of education, outreach, or technology transfer.