{"title":"Erdős和Kac的一个除数函数级数的无理性","authors":"Kyle Pratt","doi":"10.4064/aa220927-1-9","DOIUrl":null,"url":null,"abstract":"For positive integers $k$ and $n$ let $\\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\\alpha _k = \\sum _{n\\geq 1} \\frac {\\sigma _k(n)}{n!}$ is irrational. It is known uncond","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"21 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The irrationality of a divisor function series of Erdős and Kac\",\"authors\":\"Kyle Pratt\",\"doi\":\"10.4064/aa220927-1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For positive integers $k$ and $n$ let $\\\\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\\\\alpha _k = \\\\sum _{n\\\\geq 1} \\\\frac {\\\\sigma _k(n)}{n!}$ is irrational. It is known uncond\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220927-1-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa220927-1-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The irrationality of a divisor function series of Erdős and Kac
For positive integers $k$ and $n$ let $\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\alpha _k = \sum _{n\geq 1} \frac {\sigma _k(n)}{n!}$ is irrational. It is known uncond