Erdős和Kac的一个除数函数级数的无理性

IF 0.5 3区 数学 Q3 MATHEMATICS
Kyle Pratt
{"title":"Erdős和Kac的一个除数函数级数的无理性","authors":"Kyle Pratt","doi":"10.4064/aa220927-1-9","DOIUrl":null,"url":null,"abstract":"For positive integers $k$ and $n$ let $\\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\\alpha _k = \\sum _{n\\geq 1} \\frac {\\sigma _k(n)}{n!}$ is irrational. It is known uncond","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"21 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The irrationality of a divisor function series of Erdős and Kac\",\"authors\":\"Kyle Pratt\",\"doi\":\"10.4064/aa220927-1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For positive integers $k$ and $n$ let $\\\\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\\\\alpha _k = \\\\sum _{n\\\\geq 1} \\\\frac {\\\\sigma _k(n)}{n!}$ is irrational. It is known uncond\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220927-1-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa220927-1-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数$k$和$n$,令$\sigma _k(n)$表示$n$的各因子的$k$次幂的和。Erdős和Kac问,对于每一个$k$, $\alpha _k = \sum _{n\geq 1} \frac {\sigma _k(n)}{n!}$是否是无理数。它被称为uncond
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The irrationality of a divisor function series of Erdős and Kac
For positive integers $k$ and $n$ let $\sigma _k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erdős and Kac asked whether, for every $k$, the number $\alpha _k = \sum _{n\geq 1} \frac {\sigma _k(n)}{n!}$ is irrational. It is known uncond
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信