{"title":"非瞬时二元对准碰撞的两种动力学模型","authors":"Laura Kanzler, Christian Schmeiser, Veronica Tora","doi":"10.3934/krm.2023038","DOIUrl":null,"url":null,"abstract":"A new type of kinetic models with non-instantaneous binary collisions is considered. Collisions are described by a transport process in the joint state space of a pair of particles. The interactions are of alignment type, where the states of the particles approach each other. For two spatially homogeneous models with deterministic or stochastic collision times existence and uniqueness of solutions, the long time behavior, and the instantaneous limit are considered, where the latter leads to standard kinetic models of Boltzmann type.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"17 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two kinetic models for non-instantaneous binary alignment collisions\",\"authors\":\"Laura Kanzler, Christian Schmeiser, Veronica Tora\",\"doi\":\"10.3934/krm.2023038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new type of kinetic models with non-instantaneous binary collisions is considered. Collisions are described by a transport process in the joint state space of a pair of particles. The interactions are of alignment type, where the states of the particles approach each other. For two spatially homogeneous models with deterministic or stochastic collision times existence and uniqueness of solutions, the long time behavior, and the instantaneous limit are considered, where the latter leads to standard kinetic models of Boltzmann type.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2023038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two kinetic models for non-instantaneous binary alignment collisions
A new type of kinetic models with non-instantaneous binary collisions is considered. Collisions are described by a transport process in the joint state space of a pair of particles. The interactions are of alignment type, where the states of the particles approach each other. For two spatially homogeneous models with deterministic or stochastic collision times existence and uniqueness of solutions, the long time behavior, and the instantaneous limit are considered, where the latter leads to standard kinetic models of Boltzmann type.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.