向列液晶的Oseen-Frank模型的降维和缺陷的出现

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Giacomo Canevari, Antonio Segatti
{"title":"向列液晶的Oseen-Frank模型的降维和缺陷的出现","authors":"Giacomo Canevari, Antonio Segatti","doi":"10.3934/dcdss.2023174","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the behavior of the Oseen-Frank model for nematic liquid crystals in the limit of vanishing thickness. More precisely, in a thin slab $ \\Omega\\times (0, h) $ with $ \\Omega\\subset \\mathbb{R}^2 $ and $ h>0 $ we consider the one-constant approximation of the Oseen-Frank model for nematic liquid crystals. We impose Dirichlet boundary conditions on the lateral boundary and weak anchoring conditions on the top and bottom faces of the cylinder $ \\Omega\\times (0, h) $. The Dirichlet datum has the form $ (g, 0) $, where $ g\\colon\\partial\\Omega\\to \\mathbb{S}^1 $ has non-zero winding number. Under appropriate conditions on the scaling, in the limit as $ h\\to 0 $ we obtain a behavior that is similar to the one observed in the asymptotic analysis (see [7]) of the two-dimensional Ginzburg-Landau functional. More precisely, we rigorously prove the emergence of a finite number of defect points in $ \\Omega $ having topological charges that sum to the degree of the boundary datum. Moreover, the position of these points is governed by a Renormalized Energy, as in the seminal results of Bethuel, Brezis and Hélein [7].","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional reduction and emergence of defects in the Oseen-Frank model for nematic liquid crystals\",\"authors\":\"Giacomo Canevari, Antonio Segatti\",\"doi\":\"10.3934/dcdss.2023174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the behavior of the Oseen-Frank model for nematic liquid crystals in the limit of vanishing thickness. More precisely, in a thin slab $ \\\\Omega\\\\times (0, h) $ with $ \\\\Omega\\\\subset \\\\mathbb{R}^2 $ and $ h>0 $ we consider the one-constant approximation of the Oseen-Frank model for nematic liquid crystals. We impose Dirichlet boundary conditions on the lateral boundary and weak anchoring conditions on the top and bottom faces of the cylinder $ \\\\Omega\\\\times (0, h) $. The Dirichlet datum has the form $ (g, 0) $, where $ g\\\\colon\\\\partial\\\\Omega\\\\to \\\\mathbb{S}^1 $ has non-zero winding number. Under appropriate conditions on the scaling, in the limit as $ h\\\\to 0 $ we obtain a behavior that is similar to the one observed in the asymptotic analysis (see [7]) of the two-dimensional Ginzburg-Landau functional. More precisely, we rigorously prove the emergence of a finite number of defect points in $ \\\\Omega $ having topological charges that sum to the degree of the boundary datum. Moreover, the position of these points is governed by a Renormalized Energy, as in the seminal results of Bethuel, Brezis and Hélein [7].\",\"PeriodicalId\":48838,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series S\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2023174\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2023174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了向列液晶在厚度消失极限下的Oseen-Frank模型的行为。更准确地说,在具有$ \Omega\subset \mathbb{R}^2 $和$ h>0 $的薄板$ \Omega\times (0, h) $中,我们考虑向列液晶的osee - frank模型的单常数近似。我们在柱体的侧向边界上施加Dirichlet边界条件,在柱体的上下面施加弱锚固条件$ \Omega\times (0, h) $。狄利克雷基准的形式为$ (g, 0) $,其中$ g\colon\partial\Omega\to \mathbb{S}^1 $有非零圈数。在适当的尺度条件下,在极限为$ h\to 0 $时,我们得到了类似于二维Ginzburg-Landau泛函渐近分析(见[7])中观察到的行为。更准确地说,我们严格地证明了$ \Omega $中存在有限数量的缺陷点,其拓扑电荷之和等于边界基准的程度。此外,这些点的位置是由重整能量控制的,就像Bethuel, Brezis和hsamlein[7]的开创性结果一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensional reduction and emergence of defects in the Oseen-Frank model for nematic liquid crystals
In this paper we discuss the behavior of the Oseen-Frank model for nematic liquid crystals in the limit of vanishing thickness. More precisely, in a thin slab $ \Omega\times (0, h) $ with $ \Omega\subset \mathbb{R}^2 $ and $ h>0 $ we consider the one-constant approximation of the Oseen-Frank model for nematic liquid crystals. We impose Dirichlet boundary conditions on the lateral boundary and weak anchoring conditions on the top and bottom faces of the cylinder $ \Omega\times (0, h) $. The Dirichlet datum has the form $ (g, 0) $, where $ g\colon\partial\Omega\to \mathbb{S}^1 $ has non-zero winding number. Under appropriate conditions on the scaling, in the limit as $ h\to 0 $ we obtain a behavior that is similar to the one observed in the asymptotic analysis (see [7]) of the two-dimensional Ginzburg-Landau functional. More precisely, we rigorously prove the emergence of a finite number of defect points in $ \Omega $ having topological charges that sum to the degree of the boundary datum. Moreover, the position of these points is governed by a Renormalized Energy, as in the seminal results of Bethuel, Brezis and Hélein [7].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信