特定的格式塔原理不能解释(非)拥挤

IF 2.4 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Oh-Hyeon Choung, Einat Rashal, Marina Kunchulia, Michael H. Herzog
{"title":"特定的格式塔原理不能解释(非)拥挤","authors":"Oh-Hyeon Choung, Einat Rashal, Marina Kunchulia, Michael H. Herzog","doi":"10.3389/fcomp.2023.1154957","DOIUrl":null,"url":null,"abstract":"The standard physiological model has serious problems accounting for many aspects of vision, particularly when stimulus configurations become slightly more complex than the ones classically used, e.g., configurations of Gabors rather than only one or a few Gabors. For example, as shown in many publications, crowding cannot be explained with most models crafted in the spirit of the physiological approach. In crowding, a target is neighbored by flanking elements, which impair target discrimination. However, when more flankers are added, performance can improve for certain flanker configurations (uncrowding), which cannot be explained by classic models. As was shown, aspects of perceptual organization play a crucial role in uncrowding. For this reason, we tested here whether known principles of perceptual organization can explain crowding and uncrowding. The answer is negative. As shown with subjective tests, whereas grouping is indeed key in uncrowding, the four Gestalt principles examined here did not provide a clear explanation to this effect, as variability in performance was found between and within categories of configurations. We discuss the philosophical foundations of both the physiological and the classic Gestalt approaches and sketch a way to a happy marriage between the two.","PeriodicalId":52823,"journal":{"name":"Frontiers in Computer Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific Gestalt principles cannot explain (un)crowding\",\"authors\":\"Oh-Hyeon Choung, Einat Rashal, Marina Kunchulia, Michael H. Herzog\",\"doi\":\"10.3389/fcomp.2023.1154957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard physiological model has serious problems accounting for many aspects of vision, particularly when stimulus configurations become slightly more complex than the ones classically used, e.g., configurations of Gabors rather than only one or a few Gabors. For example, as shown in many publications, crowding cannot be explained with most models crafted in the spirit of the physiological approach. In crowding, a target is neighbored by flanking elements, which impair target discrimination. However, when more flankers are added, performance can improve for certain flanker configurations (uncrowding), which cannot be explained by classic models. As was shown, aspects of perceptual organization play a crucial role in uncrowding. For this reason, we tested here whether known principles of perceptual organization can explain crowding and uncrowding. The answer is negative. As shown with subjective tests, whereas grouping is indeed key in uncrowding, the four Gestalt principles examined here did not provide a clear explanation to this effect, as variability in performance was found between and within categories of configurations. We discuss the philosophical foundations of both the physiological and the classic Gestalt approaches and sketch a way to a happy marriage between the two.\",\"PeriodicalId\":52823,\"journal\":{\"name\":\"Frontiers in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcomp.2023.1154957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomp.2023.1154957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

标准的生理模型在解释视觉的许多方面存在严重问题,特别是当刺激配置比经典使用的稍微复杂时,例如,Gabors配置而不是只有一个或几个Gabors配置。例如,正如许多出版物所显示的那样,拥挤现象不能用大多数基于生理学方法的模型来解释。在拥挤情况下,目标被侧翼元素包围,这会影响目标的识别。然而,当添加更多侧卫时,某些侧卫配置(不拥挤)的性能可以得到改善,这是经典模型无法解释的。正如所显示的,知觉组织的各个方面在疏解拥挤中起着至关重要的作用。出于这个原因,我们在这里测试了知觉组织的已知原则是否可以解释拥挤和不拥挤。答案是否定的。正如主观测试所显示的那样,虽然分组确实是消除拥挤的关键,但这里审查的四个格式塔原则并没有对这种效果提供明确的解释,因为在配置类别之间和内部发现了性能的可变性。我们讨论了生理学和经典格式塔方法的哲学基础,并概述了两者之间幸福婚姻的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific Gestalt principles cannot explain (un)crowding
The standard physiological model has serious problems accounting for many aspects of vision, particularly when stimulus configurations become slightly more complex than the ones classically used, e.g., configurations of Gabors rather than only one or a few Gabors. For example, as shown in many publications, crowding cannot be explained with most models crafted in the spirit of the physiological approach. In crowding, a target is neighbored by flanking elements, which impair target discrimination. However, when more flankers are added, performance can improve for certain flanker configurations (uncrowding), which cannot be explained by classic models. As was shown, aspects of perceptual organization play a crucial role in uncrowding. For this reason, we tested here whether known principles of perceptual organization can explain crowding and uncrowding. The answer is negative. As shown with subjective tests, whereas grouping is indeed key in uncrowding, the four Gestalt principles examined here did not provide a clear explanation to this effect, as variability in performance was found between and within categories of configurations. We discuss the philosophical foundations of both the physiological and the classic Gestalt approaches and sketch a way to a happy marriage between the two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computer Science
Frontiers in Computer Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.30
自引率
0.00%
发文量
152
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信