基于模糊模型的分布式无线传感器网络图相关异常检测

Q2 Computer Science
Yasir Abdullah R., Mary Posonia A., Barakkath Nisha U.
{"title":"基于模糊模型的分布式无线传感器网络图相关异常检测","authors":"Yasir Abdullah R., Mary Posonia A., Barakkath Nisha U.","doi":"10.18178/ijeetc.12.5.306-316","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks have limited power for processing data, storage, and communication. Due to power shortages and anonymous attacks, sensor nodes may produce faulty or anomaly data which affects the accuracy of the entire system. Effective anomaly detection is essential to make an accurate prediction of the result. Moreover, clustering-based anomaly detection reduces energy consumption by avoiding individual sensory data reporting to the base station. The proposed methodology consists of two phases: Correlated graph clustering, and anomaly detection using a Fuzzy model. In the first phase, the spatial correlation of the sensor readings is used to generate a graph, partitioned into clusters. The intra-cluster and inter-cluster temporal correlations are analyzed to refine the optimized cluster structure. Finally, a fuzzy Mamdani model is used to classify the clusters as either normal or anomalous based on their membership values. The proposed approach leverages both spatial and temporal correlation between sensor measurements to form optimized clusters that are more effective for anomaly detection. The Experiments performed on a real-world dataset of WSNs indicate the efficacy of the proposed methodology, which shows significant improvement over traditional anomaly detection methods the electronic file of your paper will be formatted further for final publication.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graph Correlated Anomaly Detection with Fuzzy Model for Distributed Wireless Sensor Networks\",\"authors\":\"Yasir Abdullah R., Mary Posonia A., Barakkath Nisha U.\",\"doi\":\"10.18178/ijeetc.12.5.306-316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks have limited power for processing data, storage, and communication. Due to power shortages and anonymous attacks, sensor nodes may produce faulty or anomaly data which affects the accuracy of the entire system. Effective anomaly detection is essential to make an accurate prediction of the result. Moreover, clustering-based anomaly detection reduces energy consumption by avoiding individual sensory data reporting to the base station. The proposed methodology consists of two phases: Correlated graph clustering, and anomaly detection using a Fuzzy model. In the first phase, the spatial correlation of the sensor readings is used to generate a graph, partitioned into clusters. The intra-cluster and inter-cluster temporal correlations are analyzed to refine the optimized cluster structure. Finally, a fuzzy Mamdani model is used to classify the clusters as either normal or anomalous based on their membership values. The proposed approach leverages both spatial and temporal correlation between sensor measurements to form optimized clusters that are more effective for anomaly detection. The Experiments performed on a real-world dataset of WSNs indicate the efficacy of the proposed methodology, which shows significant improvement over traditional anomaly detection methods the electronic file of your paper will be formatted further for final publication.\",\"PeriodicalId\":37533,\"journal\":{\"name\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijeetc.12.5.306-316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijeetc.12.5.306-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络在处理数据、存储和通信方面的能力有限。由于电力短缺和匿名攻击,传感器节点可能会产生故障或异常数据,从而影响整个系统的准确性。有效的异常检测是对结果进行准确预测的关键。此外,基于聚类的异常检测通过避免向基站报告单个感知数据来减少能量消耗。该方法包括两个阶段:关联图聚类和使用模糊模型的异常检测。在第一阶段,传感器读数的空间相关性被用来生成一个图,划分成簇。分析了集群内和集群间的时间相关性,以优化集群结构。最后,利用模糊Mamdani模型根据隶属度值对聚类进行正常或异常分类。该方法利用传感器测量之间的空间和时间相关性来形成优化的聚类,从而更有效地进行异常检测。在真实的wsn数据集上进行的实验表明了所提出方法的有效性,与传统的异常检测方法相比有了显著的改进。您的论文的电子文件将被进一步格式化以最终发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Correlated Anomaly Detection with Fuzzy Model for Distributed Wireless Sensor Networks
Wireless sensor networks have limited power for processing data, storage, and communication. Due to power shortages and anonymous attacks, sensor nodes may produce faulty or anomaly data which affects the accuracy of the entire system. Effective anomaly detection is essential to make an accurate prediction of the result. Moreover, clustering-based anomaly detection reduces energy consumption by avoiding individual sensory data reporting to the base station. The proposed methodology consists of two phases: Correlated graph clustering, and anomaly detection using a Fuzzy model. In the first phase, the spatial correlation of the sensor readings is used to generate a graph, partitioned into clusters. The intra-cluster and inter-cluster temporal correlations are analyzed to refine the optimized cluster structure. Finally, a fuzzy Mamdani model is used to classify the clusters as either normal or anomalous based on their membership values. The proposed approach leverages both spatial and temporal correlation between sensor measurements to form optimized clusters that are more effective for anomaly detection. The Experiments performed on a real-world dataset of WSNs indicate the efficacy of the proposed methodology, which shows significant improvement over traditional anomaly detection methods the electronic file of your paper will be formatted further for final publication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
22
期刊介绍: International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信