利用深度强化学习控制无人机运动用于环境监测

Q2 Computer Science
Thu Nga Nguyen, Trong Binh Nguyen, Trinh Van Chien, Tien Hoa Nguyen
{"title":"利用深度强化学习控制无人机运动用于环境监测","authors":"Thu Nga Nguyen, Trong Binh Nguyen, Trinh Van Chien, Tien Hoa Nguyen","doi":"10.18178/ijeetc.12.5.317-325","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are increasingly used in various applications, including infrastructure inspection, traffic monitoring, remote sensing, mapping, and rescue. However, many applications have required UAVs to function autonomously, without human intervention to improve system performance. In this study, we propose a new approach to environmental monitoring using a group of UAVs equipped with sensors under the support of reinforcement learning. Regarding the communication system model, we assume that UAVs can cooperate with each other to learn and share information about the environment, and then relocate to an optimal position while managing connectivity and coverage. After that, we exploit reinforcement learning with a deep deterministic policy gradient (DDPG) algorithm to optimize environmental monitoring with the proposed algorithm. Specifically, the proposed algorithm aims to simulate an environmental monitoring system using UAVs with basic parameters. We further apply the proposed algorithm to evaluate network performance under different parameter settings. Numerical results validate the effectiveness of the proposed learning-based framework in monitoring and sensing data.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Deep Reinforcement Learning to Control UAV Movement for Environmental Monitoring\",\"authors\":\"Thu Nga Nguyen, Trong Binh Nguyen, Trinh Van Chien, Tien Hoa Nguyen\",\"doi\":\"10.18178/ijeetc.12.5.317-325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) are increasingly used in various applications, including infrastructure inspection, traffic monitoring, remote sensing, mapping, and rescue. However, many applications have required UAVs to function autonomously, without human intervention to improve system performance. In this study, we propose a new approach to environmental monitoring using a group of UAVs equipped with sensors under the support of reinforcement learning. Regarding the communication system model, we assume that UAVs can cooperate with each other to learn and share information about the environment, and then relocate to an optimal position while managing connectivity and coverage. After that, we exploit reinforcement learning with a deep deterministic policy gradient (DDPG) algorithm to optimize environmental monitoring with the proposed algorithm. Specifically, the proposed algorithm aims to simulate an environmental monitoring system using UAVs with basic parameters. We further apply the proposed algorithm to evaluate network performance under different parameter settings. Numerical results validate the effectiveness of the proposed learning-based framework in monitoring and sensing data.\",\"PeriodicalId\":37533,\"journal\":{\"name\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijeetc.12.5.317-325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijeetc.12.5.317-325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

无人机越来越多地应用于基础设施检查、交通监控、遥感、测绘和救援等各个领域。然而,许多应用都要求无人机自主运行,无需人为干预来提高系统性能。在这项研究中,我们提出了一种新的环境监测方法,使用一组配备传感器的无人机在强化学习的支持下进行环境监测。在通信系统模型中,我们假设无人机可以相互合作,学习和共享环境信息,然后在管理连通性和覆盖范围的同时重新定位到最优位置。之后,我们利用深度确定性策略梯度(DDPG)算法的强化学习来优化所提出算法的环境监测。具体而言,该算法旨在模拟具有基本参数的无人机环境监测系统。我们进一步应用该算法来评估不同参数设置下的网络性能。数值结果验证了所提出的基于学习的框架在监测和传感数据中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Deep Reinforcement Learning to Control UAV Movement for Environmental Monitoring
Unmanned aerial vehicles (UAVs) are increasingly used in various applications, including infrastructure inspection, traffic monitoring, remote sensing, mapping, and rescue. However, many applications have required UAVs to function autonomously, without human intervention to improve system performance. In this study, we propose a new approach to environmental monitoring using a group of UAVs equipped with sensors under the support of reinforcement learning. Regarding the communication system model, we assume that UAVs can cooperate with each other to learn and share information about the environment, and then relocate to an optimal position while managing connectivity and coverage. After that, we exploit reinforcement learning with a deep deterministic policy gradient (DDPG) algorithm to optimize environmental monitoring with the proposed algorithm. Specifically, the proposed algorithm aims to simulate an environmental monitoring system using UAVs with basic parameters. We further apply the proposed algorithm to evaluate network performance under different parameter settings. Numerical results validate the effectiveness of the proposed learning-based framework in monitoring and sensing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
22
期刊介绍: International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信