具有线性和非线性扰动的非线性脉冲混合微分方程解的存在唯一性

Q4 Mathematics
{"title":"具有线性和非线性扰动的非线性脉冲混合微分方程解的存在唯一性","authors":"","doi":"10.28919/jmcs/8043","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the existence and uniqueness of solutions to impulsive nonlinear hybrid fractional differential equations, considering both linear and nonlinear perturbations. Our approach relies on the nonlinear alternative of Leray-Schauder type, in conjunction with Banach’s fixed-point theorem. Additionally, we provide an illustrative example to showcase the applicability of our results.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solutions to nonlinear impulsive hybrid differential equations with linear and nonlinear perturbations\",\"authors\":\"\",\"doi\":\"10.28919/jmcs/8043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish the existence and uniqueness of solutions to impulsive nonlinear hybrid fractional differential equations, considering both linear and nonlinear perturbations. Our approach relies on the nonlinear alternative of Leray-Schauder type, in conjunction with Banach’s fixed-point theorem. Additionally, we provide an illustrative example to showcase the applicability of our results.\",\"PeriodicalId\":36607,\"journal\":{\"name\":\"Journal of Mathematical and Computational Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/jmcs/8043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/8043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了考虑线性摄动和非线性摄动的脉冲非线性混合分数阶微分方程解的存在唯一性。我们的方法依赖于Leray-Schauder型的非线性替代,并结合Banach不动点定理。此外,我们提供了一个说明性示例来展示我们的结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of solutions to nonlinear impulsive hybrid differential equations with linear and nonlinear perturbations
In this paper, we establish the existence and uniqueness of solutions to impulsive nonlinear hybrid fractional differential equations, considering both linear and nonlinear perturbations. Our approach relies on the nonlinear alternative of Leray-Schauder type, in conjunction with Banach’s fixed-point theorem. Additionally, we provide an illustrative example to showcase the applicability of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信