{"title":"一种基于优化三维U-Net模型的心脏图像分割新方法","authors":"Xuan Dong, Xuetao Mao, Jian Yao","doi":"10.1142/s0219519423401024","DOIUrl":null,"url":null,"abstract":"Medical image segmentation holds significant importance for doctors, patients, and the entire health care industry. For doctors, it provides more accurate information about cardiac structures, aiding in improving diagnoses and treatment decisions. For patients, segmentation techniques enable personalized medical care, enhancing treatment outcomes and satisfaction. The entire health care sector benefits from the advancement of this technology, driving the development of medical science and contributing to better health care quality and patient well-being. Additionally, segmentation plays a crucial role in research and education, facilitating the accumulation and dissemination of medical knowledge. In summary, the application of medical image segmentation has profound implications for progress in the medical field and patient welfare. In recent years, with technological advancements and innovative algorithms, medical image quality has greatly improved, with higher resolution and reduced noise and artifacts. Simultaneously, the application of deep learning techniques has made the automatic analysis and diagnosis of medical images more precise and efficient. However, due to the complex structures and diversity often present in medical images, models tend to have limited generalization across different datasets, leading to unstable segmentation performance. Considering the excellent image segmentation performance of the three-dimensional (3D) U-Net model, this study introduces an improved spatial attention mechanism on the basis of the 3D U-Net model to enhance its segmentation performance. The spatial attention mechanism enhances the model’s feature extraction capabilities. The enhanced network can capture dependencies among features across both channel and spatial dimensions in the entire global scope. Additionally, it can strengthen any two correlated features within the input feature vector, thereby enhancing the model’s representational capacity. Through detailed experimental validation, the effectiveness of the proposed model is thoroughly demonstrated. Its superiority in performance and computational efficiency positions it as a significant breakthrough in the medical image segmentation field, providing a strong foundation for future research and clinical practice in medical image processing.","PeriodicalId":50135,"journal":{"name":"Journal of Mechanics in Medicine and Biology","volume":"221 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Cardiac Image Segmentation Method Using an Optimized 3D U-Net Model\",\"authors\":\"Xuan Dong, Xuetao Mao, Jian Yao\",\"doi\":\"10.1142/s0219519423401024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image segmentation holds significant importance for doctors, patients, and the entire health care industry. For doctors, it provides more accurate information about cardiac structures, aiding in improving diagnoses and treatment decisions. For patients, segmentation techniques enable personalized medical care, enhancing treatment outcomes and satisfaction. The entire health care sector benefits from the advancement of this technology, driving the development of medical science and contributing to better health care quality and patient well-being. Additionally, segmentation plays a crucial role in research and education, facilitating the accumulation and dissemination of medical knowledge. In summary, the application of medical image segmentation has profound implications for progress in the medical field and patient welfare. In recent years, with technological advancements and innovative algorithms, medical image quality has greatly improved, with higher resolution and reduced noise and artifacts. Simultaneously, the application of deep learning techniques has made the automatic analysis and diagnosis of medical images more precise and efficient. However, due to the complex structures and diversity often present in medical images, models tend to have limited generalization across different datasets, leading to unstable segmentation performance. Considering the excellent image segmentation performance of the three-dimensional (3D) U-Net model, this study introduces an improved spatial attention mechanism on the basis of the 3D U-Net model to enhance its segmentation performance. The spatial attention mechanism enhances the model’s feature extraction capabilities. The enhanced network can capture dependencies among features across both channel and spatial dimensions in the entire global scope. Additionally, it can strengthen any two correlated features within the input feature vector, thereby enhancing the model’s representational capacity. Through detailed experimental validation, the effectiveness of the proposed model is thoroughly demonstrated. Its superiority in performance and computational efficiency positions it as a significant breakthrough in the medical image segmentation field, providing a strong foundation for future research and clinical practice in medical image processing.\",\"PeriodicalId\":50135,\"journal\":{\"name\":\"Journal of Mechanics in Medicine and Biology\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219519423401024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219519423401024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A Novel Cardiac Image Segmentation Method Using an Optimized 3D U-Net Model
Medical image segmentation holds significant importance for doctors, patients, and the entire health care industry. For doctors, it provides more accurate information about cardiac structures, aiding in improving diagnoses and treatment decisions. For patients, segmentation techniques enable personalized medical care, enhancing treatment outcomes and satisfaction. The entire health care sector benefits from the advancement of this technology, driving the development of medical science and contributing to better health care quality and patient well-being. Additionally, segmentation plays a crucial role in research and education, facilitating the accumulation and dissemination of medical knowledge. In summary, the application of medical image segmentation has profound implications for progress in the medical field and patient welfare. In recent years, with technological advancements and innovative algorithms, medical image quality has greatly improved, with higher resolution and reduced noise and artifacts. Simultaneously, the application of deep learning techniques has made the automatic analysis and diagnosis of medical images more precise and efficient. However, due to the complex structures and diversity often present in medical images, models tend to have limited generalization across different datasets, leading to unstable segmentation performance. Considering the excellent image segmentation performance of the three-dimensional (3D) U-Net model, this study introduces an improved spatial attention mechanism on the basis of the 3D U-Net model to enhance its segmentation performance. The spatial attention mechanism enhances the model’s feature extraction capabilities. The enhanced network can capture dependencies among features across both channel and spatial dimensions in the entire global scope. Additionally, it can strengthen any two correlated features within the input feature vector, thereby enhancing the model’s representational capacity. Through detailed experimental validation, the effectiveness of the proposed model is thoroughly demonstrated. Its superiority in performance and computational efficiency positions it as a significant breakthrough in the medical image segmentation field, providing a strong foundation for future research and clinical practice in medical image processing.
期刊介绍:
This journal has as its objective the publication and dissemination of original research (even for "revolutionary concepts that contrast with existing theories" & "hypothesis") in all fields of engineering-mechanics that includes mechanisms, processes, bio-sensors and bio-devices in medicine, biology and healthcare. The journal publishes original papers in English which contribute to an understanding of biomedical engineering and science at a nano- to macro-scale or an improvement of the methods and techniques of medical, biological and clinical treatment by the application of advanced high technology.
Journal''s Research Scopes/Topics Covered (but not limited to):
Artificial Organs, Biomechanics of Organs.
Biofluid Mechanics, Biorheology, Blood Flow Measurement Techniques, Microcirculation, Hemodynamics.
Bioheat Transfer and Mass Transport, Nano Heat Transfer.
Biomaterials.
Biomechanics & Modeling of Cell and Molecular.
Biomedical Instrumentation and BioSensors that implicate ''human mechanics'' in details.
Biomedical Signal Processing Techniques that implicate ''human mechanics'' in details.
Bio-Microelectromechanical Systems, Microfluidics.
Bio-Nanotechnology and Clinical Application.
Bird and Insect Aerodynamics.
Cardiovascular/Cardiac mechanics.
Cardiovascular Systems Physiology/Engineering.
Cellular and Tissue Mechanics/Engineering.
Computational Biomechanics/Physiological Modelling, Systems Physiology.
Clinical Biomechanics.
Hearing Mechanics.
Human Movement and Animal Locomotion.
Implant Design and Mechanics.
Mathematical modeling.
Mechanobiology of Diseases.
Mechanics of Medical Robotics.
Muscle/Neuromuscular/Musculoskeletal Mechanics and Engineering.
Neural- & Neuro-Behavioral Engineering.
Orthopedic Biomechanics.
Reproductive and Urogynecological Mechanics.
Respiratory System Engineering...