大型密集系统高精度随机向量迭代线性求解器

IF 0.8 Q3 STATISTICS & PROBABILITY
Karl K. Sabelfeld, Anastasiya Kireeva
{"title":"大型密集系统高精度随机向量迭代线性求解器","authors":"Karl K. Sabelfeld, Anastasiya Kireeva","doi":"10.1515/mcma-2023-2013","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we suggest randomized linear solvers with a focus on refinement issue to achieve a high precision while maintaining all the advantages of the Monte Carlo method for solving systems of large dimension with dense matrices. It is shown that each iterative refinement step reduces the error by one order of magnitude. The crucial point of the suggested method is, in contrast to the standard Monte Carlo method, that the randomized vector algorithm computes the entire solution column at once, rather than a single component. This makes it possible to efficiently construct the iterative refinement method. We apply the developed method for solving a system of elasticity equations.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized vector iterative linear solvers of high precision for large dense system\",\"authors\":\"Karl K. Sabelfeld, Anastasiya Kireeva\",\"doi\":\"10.1515/mcma-2023-2013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we suggest randomized linear solvers with a focus on refinement issue to achieve a high precision while maintaining all the advantages of the Monte Carlo method for solving systems of large dimension with dense matrices. It is shown that each iterative refinement step reduces the error by one order of magnitude. The crucial point of the suggested method is, in contrast to the standard Monte Carlo method, that the randomized vector algorithm computes the entire solution column at once, rather than a single component. This makes it possible to efficiently construct the iterative refinement method. We apply the developed method for solving a system of elasticity equations.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了随机线性求解器,重点是细化问题,以实现高精度,同时保持蒙特卡罗方法在求解具有密集矩阵的大维系统时的所有优点。结果表明,每个迭代细化步骤减小误差的数量级。与标准蒙特卡罗方法相比,所建议的方法的关键点是随机向量算法一次计算整个解列,而不是单个分量。这使得有效地构造迭代细化方法成为可能。我们应用所开发的方法来求解弹性方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized vector iterative linear solvers of high precision for large dense system
Abstract In this paper we suggest randomized linear solvers with a focus on refinement issue to achieve a high precision while maintaining all the advantages of the Monte Carlo method for solving systems of large dimension with dense matrices. It is shown that each iterative refinement step reduces the error by one order of magnitude. The crucial point of the suggested method is, in contrast to the standard Monte Carlo method, that the randomized vector algorithm computes the entire solution column at once, rather than a single component. This makes it possible to efficiently construct the iterative refinement method. We apply the developed method for solving a system of elasticity equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信