{"title":"Zakharov-Kuznetsov方程解的正则性传播","authors":"Mendez, A. J.","doi":"10.1142/s0219530523500239","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the Zakharov–Kuznetsov (ZK) equation in the [Formula: see text]-dimensional setting with [Formula: see text] and investigate its smoothness properties. We extend the well-known regularity propagation phenomenon observed in the 2D and 3D cases, where the regularity of the initial data on certain half-spaces propagates with infinite speed, to the case where the regularity of the initial data is measured on a fractional scale. To achieve this, we introduce new localization formulas that enable us to describe the regularity of the solution on a specific class of subsets in Euclidean space. This work provides insights into the regularity behavior of solutions of the ZK equation in higher dimensions and with more general initial data.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the propagation of Regularity for Solutions of the Zakharov-Kuznetsov Equation\",\"authors\":\"Mendez, A. J.\",\"doi\":\"10.1142/s0219530523500239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the Zakharov–Kuznetsov (ZK) equation in the [Formula: see text]-dimensional setting with [Formula: see text] and investigate its smoothness properties. We extend the well-known regularity propagation phenomenon observed in the 2D and 3D cases, where the regularity of the initial data on certain half-spaces propagates with infinite speed, to the case where the regularity of the initial data is measured on a fractional scale. To achieve this, we introduce new localization formulas that enable us to describe the regularity of the solution on a specific class of subsets in Euclidean space. This work provides insights into the regularity behavior of solutions of the ZK equation in higher dimensions and with more general initial data.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523500239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219530523500239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the propagation of Regularity for Solutions of the Zakharov-Kuznetsov Equation
In this paper, we focus on the Zakharov–Kuznetsov (ZK) equation in the [Formula: see text]-dimensional setting with [Formula: see text] and investigate its smoothness properties. We extend the well-known regularity propagation phenomenon observed in the 2D and 3D cases, where the regularity of the initial data on certain half-spaces propagates with infinite speed, to the case where the regularity of the initial data is measured on a fractional scale. To achieve this, we introduce new localization formulas that enable us to describe the regularity of the solution on a specific class of subsets in Euclidean space. This work provides insights into the regularity behavior of solutions of the ZK equation in higher dimensions and with more general initial data.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.