渐变交换环上渐变模的渐变拟初级谱上的拟zariski拓扑

IF 0.8 4区 数学 Q2 MATHEMATICS
Malik Jaradat, Khaldoun Al-Zoubi
{"title":"渐变交换环上渐变模的渐变拟初级谱上的拟zariski拓扑","authors":"Malik Jaradat, Khaldoun Al-Zoubi","doi":"10.1515/gmj-2023-2075","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a group. Let R be a G -graded commutative ring and let M be a graded R -module. A proper graded submodule Q of M is called a graded quasi-primary submodule if whenever <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>h</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {r\\in h(R)} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>h</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {m\\in h(M)} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mi>m</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> </m:math> {rm\\in Q} , then either <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:mi>Gr</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:msub> <m:mo>:</m:mo> <m:mi>R</m:mi> </m:msub> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {r\\in\\operatorname{Gr}((Q:_{R}M))} or <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>Gr</m:mi> <m:mi>M</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {m\\in\\operatorname{Gr}_{M}(Q)} . The graded quasi-primary spectrum <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\mathop{\\rm qp.Spec}\\nolimits_{g}(M)} is defined to be the set of all graded quasi-primary submodules of M . In this paper, we introduce and study a topology on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\mathop{\\rm qp.Spec}\\nolimits_{g}(M)} , called the quasi-Zariski topology, and investigate the properties of this topology and some conditions under which <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>.</m:mo> <m:msup> <m:mi>τ</m:mi> <m:mi>g</m:mi> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> {(\\mathop{\\rm qp.Spec}\\nolimits_{g}(M),q.\\tau^{g})} is a Noetherian, spectral space.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"47 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring\",\"authors\":\"Malik Jaradat, Khaldoun Al-Zoubi\",\"doi\":\"10.1515/gmj-2023-2075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G be a group. Let R be a G -graded commutative ring and let M be a graded R -module. A proper graded submodule Q of M is called a graded quasi-primary submodule if whenever <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>h</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {r\\\\in h(R)} and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>h</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {m\\\\in h(M)} with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mi>m</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> </m:math> {rm\\\\in Q} , then either <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:mi>Gr</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:msub> <m:mo>:</m:mo> <m:mi>R</m:mi> </m:msub> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {r\\\\in\\\\operatorname{Gr}((Q:_{R}M))} or <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>Gr</m:mi> <m:mi>M</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {m\\\\in\\\\operatorname{Gr}_{M}(Q)} . The graded quasi-primary spectrum <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\\\mathop{\\\\rm qp.Spec}\\\\nolimits_{g}(M)} is defined to be the set of all graded quasi-primary submodules of M . In this paper, we introduce and study a topology on <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\\\mathop{\\\\rm qp.Spec}\\\\nolimits_{g}(M)} , called the quasi-Zariski topology, and investigate the properties of this topology and some conditions under which <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>qp</m:mi> <m:mo>.</m:mo> <m:mi>Spec</m:mi> </m:mrow> <m:mi>g</m:mi> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>.</m:mo> <m:msup> <m:mi>τ</m:mi> <m:mi>g</m:mi> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> {(\\\\mathop{\\\\rm qp.Spec}\\\\nolimits_{g}(M),q.\\\\tau^{g})} is a Noetherian, spectral space.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2075\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设G是一个群。设R是一个G梯度交换环,M是一个梯度R模。当r∈h≠(r) {r\in h(r)}且M∈h≠(M) {M \in h(M)}且r∈M∈Q {rm\in Q}时,则r∈Gr ((Q: rm\in Q)) {r\in\operatorname{Gr}((Q:_{r} M))}或M∈Gr M∈(Q) {M \in\operatorname{Gr}_{M}(Q)},则M∈Gr M∈(Q) {M \in\operatorname{Gr} {M}(Q)}。渐变准初级谱qp。定义Spec g (M) {\mathop{\rm qp.Spec}\nolimits_{g}(M)}是M的所有分级拟主子模的集合。本文介绍并研究了qp上的一种拓扑结构。Spec g (M) {\mathop{\rm qp.Spec}\nolimits_{g}(M)},称为准zariski拓扑,并研究了该拓扑的性质以及(qp.Spec)Spec g (M), q。τ g) {(\mathop{\rm qp.Spec}\nolimits_{g}(M),q.\tau^{g})}是一个诺瑟谱空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring
Abstract Let G be a group. Let R be a G -graded commutative ring and let M be a graded R -module. A proper graded submodule Q of M is called a graded quasi-primary submodule if whenever r h ( R ) {r\in h(R)} and m h ( M ) {m\in h(M)} with r m Q {rm\in Q} , then either r Gr ( ( Q : R M ) ) {r\in\operatorname{Gr}((Q:_{R}M))} or m Gr M ( Q ) {m\in\operatorname{Gr}_{M}(Q)} . The graded quasi-primary spectrum qp . Spec g ( M ) {\mathop{\rm qp.Spec}\nolimits_{g}(M)} is defined to be the set of all graded quasi-primary submodules of M . In this paper, we introduce and study a topology on qp . Spec g ( M ) {\mathop{\rm qp.Spec}\nolimits_{g}(M)} , called the quasi-Zariski topology, and investigate the properties of this topology and some conditions under which ( qp . Spec g ( M ) , q . τ g ) {(\mathop{\rm qp.Spec}\nolimits_{g}(M),q.\tau^{g})} is a Noetherian, spectral space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信