脂基纳米颗粒(LNP)结构用于药物递送和靶向:临床试验和专利

Q3 Engineering
CHIME AMARACHI SALOME, Anthony Attama
{"title":"脂基纳米颗粒(LNP)结构用于药物递送和靶向:临床试验和专利","authors":"CHIME AMARACHI SALOME, Anthony Attama","doi":"10.2174/0122106812246316230920095319","DOIUrl":null,"url":null,"abstract":"Abstract: Lipid based nanoparticle (LNP) structures commonly used for drug delivery already in clinical use are generally classified into three viz vesicular systems, emulsion based systems and lipid nanoparticles. The details of the types, basic structural characteristics in drug delivery, clinical trials, and patents have been discussed in this work. Moreover, despite the therapeutic efficacies of LNPs, there are some toxicity challenges associated with their use. These toxicities may be cytotoxicity or genotoxicity; to overcome some of these challenges, some measures could be taken during preformulation stages in order to circumvent it. These measures have been extensively discussed in this work. LNPs are used in the targeting of immune cells, which are direct participants in a variety of diseases, hence, are attractive targets for therapy. Cell specific targeting of therapeutic agent(s) helps to concentrate and localize the therapeutic effect and, hence, lowers the systemic side effects, while simultaneously increasing the management outcome. Nanotechnology and particle engineering helps distinguish each immune cell from the other to deliver therapeutic agents and ensure in vivo stability as well as sustained drug release. Surface modification of LNP is an important characteristic utilized in targeting therapeutic agents and allows the utilization of various specific properties expressed in each immune cell. These targeting strategies have been explored in this work exhaustively, and some of the companies and academic labs that develop LNP have been discussed. Also, new ways of developing novel patentable LNP have been discussed.","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents\",\"authors\":\"CHIME AMARACHI SALOME, Anthony Attama\",\"doi\":\"10.2174/0122106812246316230920095319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Lipid based nanoparticle (LNP) structures commonly used for drug delivery already in clinical use are generally classified into three viz vesicular systems, emulsion based systems and lipid nanoparticles. The details of the types, basic structural characteristics in drug delivery, clinical trials, and patents have been discussed in this work. Moreover, despite the therapeutic efficacies of LNPs, there are some toxicity challenges associated with their use. These toxicities may be cytotoxicity or genotoxicity; to overcome some of these challenges, some measures could be taken during preformulation stages in order to circumvent it. These measures have been extensively discussed in this work. LNPs are used in the targeting of immune cells, which are direct participants in a variety of diseases, hence, are attractive targets for therapy. Cell specific targeting of therapeutic agent(s) helps to concentrate and localize the therapeutic effect and, hence, lowers the systemic side effects, while simultaneously increasing the management outcome. Nanotechnology and particle engineering helps distinguish each immune cell from the other to deliver therapeutic agents and ensure in vivo stability as well as sustained drug release. Surface modification of LNP is an important characteristic utilized in targeting therapeutic agents and allows the utilization of various specific properties expressed in each immune cell. These targeting strategies have been explored in this work exhaustively, and some of the companies and academic labs that develop LNP have been discussed. Also, new ways of developing novel patentable LNP have been discussed.\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122106812246316230920095319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122106812246316230920095319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要/ Abstract摘要:脂质纳米颗粒(LNP)结构在临床中广泛应用于给药,主要分为囊泡体系、乳状体系和脂质纳米颗粒三种。详细介绍了药物的类型、基本结构特征、临床试验和专利。此外,尽管LNPs具有治疗效果,但其使用存在一些毒性挑战。这些毒性可能是细胞毒性或遗传毒性;为了克服其中一些挑战,可以在拟订前阶段采取一些措施,以规避这些挑战。这些措施在本工作中得到了广泛的讨论。LNPs被用于靶向免疫细胞,而免疫细胞是多种疾病的直接参与者,因此是有吸引力的治疗靶点。细胞特异性靶向治疗药物有助于集中和定位治疗效果,从而降低全身副作用,同时提高治疗效果。纳米技术和粒子工程有助于区分每个免疫细胞,以提供治疗药物,并确保体内稳定性和持续的药物释放。LNP的表面修饰是靶向治疗剂的一个重要特性,它允许利用每个免疫细胞表达的各种特异性。这些目标策略已经在这项工作中进行了详尽的探讨,并讨论了一些开发LNP的公司和学术实验室。此外,还讨论了开发新型可专利LNP的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents
Abstract: Lipid based nanoparticle (LNP) structures commonly used for drug delivery already in clinical use are generally classified into three viz vesicular systems, emulsion based systems and lipid nanoparticles. The details of the types, basic structural characteristics in drug delivery, clinical trials, and patents have been discussed in this work. Moreover, despite the therapeutic efficacies of LNPs, there are some toxicity challenges associated with their use. These toxicities may be cytotoxicity or genotoxicity; to overcome some of these challenges, some measures could be taken during preformulation stages in order to circumvent it. These measures have been extensively discussed in this work. LNPs are used in the targeting of immune cells, which are direct participants in a variety of diseases, hence, are attractive targets for therapy. Cell specific targeting of therapeutic agent(s) helps to concentrate and localize the therapeutic effect and, hence, lowers the systemic side effects, while simultaneously increasing the management outcome. Nanotechnology and particle engineering helps distinguish each immune cell from the other to deliver therapeutic agents and ensure in vivo stability as well as sustained drug release. Surface modification of LNP is an important characteristic utilized in targeting therapeutic agents and allows the utilization of various specific properties expressed in each immune cell. These targeting strategies have been explored in this work exhaustively, and some of the companies and academic labs that develop LNP have been discussed. Also, new ways of developing novel patentable LNP have been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscience and Nanotechnology - Asia
Nanoscience and Nanotechnology - Asia Engineering-Engineering (all)
CiteScore
1.90
自引率
0.00%
发文量
35
期刊介绍: Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信