{"title":"结合生物信息学分析构建乳腺癌预后ceRNA网络景观,探索影响药物反应的基因","authors":"Mahboubeh Sadeghi, Claudia Cava, Pegah Mousavi, Soudabeh Sabetian, Mohammad Hossein Morowvat","doi":"10.2174/0115701808255183230922110002","DOIUrl":null,"url":null,"abstract":"Background:: Breast cancer accounts for 30% of all new female cancers yearly. Bioinformatics serves us to find new biomarkers and facilitate future experimental research. Exploring a distinct network of competing endogenous RNA (ceRNA) that includes potential prognostic, diagnostic, and therapeutic biomarkers is captivating. Methods:: Differentially expressed lncRNAs, mRNAs, and miRNAs were collected using Gene Expression Omnibus datasets. DEGs were validated based on TCGA. Functional analysis and pathway activity were also done. Drug sensitivity analyses were done, and IC50 vs. gene expression plots were depicted. Results:: A total of 696 mRNAs, 48 lncRNAs, and, 43 miRNAs were identified to have significant differential expression in cancerous breast tissue than normal breast tissue samples. Functional analysis showed significant pathway enrichments in cancer. We found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. We reached a set of five genes (EGR1, NFIB, TGFBR3, SMARCA4, and MCM2) that exhibit altered expression patterns in breast cancer, resulting in increased susceptibility of cancer cells to certain drug treatments. Conclusion:: We successfully made a unique ce-network, providing new clues to understand the regulatory functions of non-coding RNAs (miRNAs and lncRNAs) in the pathogenesis and prognosis of breast cancer and will facilitate further experimental studies to develop new biomarkers in the diagnosis, prognosis and, therapy of breast cancer. result: Functional analysis showed significant pathway enrichments in cancer, and we found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. other: None","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Prognostic ceRNA Network Landscape in Breast Cancer to Explore Impacting Genes on Drug Response by Integrative Bioinformatics Analysis\",\"authors\":\"Mahboubeh Sadeghi, Claudia Cava, Pegah Mousavi, Soudabeh Sabetian, Mohammad Hossein Morowvat\",\"doi\":\"10.2174/0115701808255183230922110002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:: Breast cancer accounts for 30% of all new female cancers yearly. Bioinformatics serves us to find new biomarkers and facilitate future experimental research. Exploring a distinct network of competing endogenous RNA (ceRNA) that includes potential prognostic, diagnostic, and therapeutic biomarkers is captivating. Methods:: Differentially expressed lncRNAs, mRNAs, and miRNAs were collected using Gene Expression Omnibus datasets. DEGs were validated based on TCGA. Functional analysis and pathway activity were also done. Drug sensitivity analyses were done, and IC50 vs. gene expression plots were depicted. Results:: A total of 696 mRNAs, 48 lncRNAs, and, 43 miRNAs were identified to have significant differential expression in cancerous breast tissue than normal breast tissue samples. Functional analysis showed significant pathway enrichments in cancer. We found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. We reached a set of five genes (EGR1, NFIB, TGFBR3, SMARCA4, and MCM2) that exhibit altered expression patterns in breast cancer, resulting in increased susceptibility of cancer cells to certain drug treatments. Conclusion:: We successfully made a unique ce-network, providing new clues to understand the regulatory functions of non-coding RNAs (miRNAs and lncRNAs) in the pathogenesis and prognosis of breast cancer and will facilitate further experimental studies to develop new biomarkers in the diagnosis, prognosis and, therapy of breast cancer. result: Functional analysis showed significant pathway enrichments in cancer, and we found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. other: None\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808255183230922110002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701808255183230922110002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Construction of Prognostic ceRNA Network Landscape in Breast Cancer to Explore Impacting Genes on Drug Response by Integrative Bioinformatics Analysis
Background:: Breast cancer accounts for 30% of all new female cancers yearly. Bioinformatics serves us to find new biomarkers and facilitate future experimental research. Exploring a distinct network of competing endogenous RNA (ceRNA) that includes potential prognostic, diagnostic, and therapeutic biomarkers is captivating. Methods:: Differentially expressed lncRNAs, mRNAs, and miRNAs were collected using Gene Expression Omnibus datasets. DEGs were validated based on TCGA. Functional analysis and pathway activity were also done. Drug sensitivity analyses were done, and IC50 vs. gene expression plots were depicted. Results:: A total of 696 mRNAs, 48 lncRNAs, and, 43 miRNAs were identified to have significant differential expression in cancerous breast tissue than normal breast tissue samples. Functional analysis showed significant pathway enrichments in cancer. We found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. We reached a set of five genes (EGR1, NFIB, TGFBR3, SMARCA4, and MCM2) that exhibit altered expression patterns in breast cancer, resulting in increased susceptibility of cancer cells to certain drug treatments. Conclusion:: We successfully made a unique ce-network, providing new clues to understand the regulatory functions of non-coding RNAs (miRNAs and lncRNAs) in the pathogenesis and prognosis of breast cancer and will facilitate further experimental studies to develop new biomarkers in the diagnosis, prognosis and, therapy of breast cancer. result: Functional analysis showed significant pathway enrichments in cancer, and we found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. other: None
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.