{"title":"带增强边的边耦合相互依赖网络的鲁棒性","authors":"Junjie Zhang, Caixia Liu, Shuxin Liu, Fei Pan, Weifei Zang","doi":"10.1093/comnet/cnad040","DOIUrl":null,"url":null,"abstract":"Abstract Previous studies on cascade failures in interdependent networks have mainly focused on node coupling relationships. However, in realistic scenarios, interactions often occur at the edges connecting nodes rather than at the nodes themselves, giving rise to edge-coupled interdependent networks. In this article, we extend the model of partially edge-coupled interdependent networks by introducing reinforced edges with a ratio of ρ. We analyse the formation of finite surviving components in edge-coupled networks, wherein the reinforced edges can function and support their neighbouring nodes to form functional components. To accomplish this, we develop a framework through a detailed mathematical derivation of the proposed model. We then investigate the critical value ρ* of the reinforced edge ratio that can change the phase transition type of the network. Our model is verified by theoretical analysis, simulation experiments and real network systems. The results show that the introduction of a small proportion of reinforced edges in the edge-coupled interdependent network can avoid the sudden collapse of the network and significantly improve the robustness of the network.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"65 7","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of edge-coupled interdependent networks with reinforced edges\",\"authors\":\"Junjie Zhang, Caixia Liu, Shuxin Liu, Fei Pan, Weifei Zang\",\"doi\":\"10.1093/comnet/cnad040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Previous studies on cascade failures in interdependent networks have mainly focused on node coupling relationships. However, in realistic scenarios, interactions often occur at the edges connecting nodes rather than at the nodes themselves, giving rise to edge-coupled interdependent networks. In this article, we extend the model of partially edge-coupled interdependent networks by introducing reinforced edges with a ratio of ρ. We analyse the formation of finite surviving components in edge-coupled networks, wherein the reinforced edges can function and support their neighbouring nodes to form functional components. To accomplish this, we develop a framework through a detailed mathematical derivation of the proposed model. We then investigate the critical value ρ* of the reinforced edge ratio that can change the phase transition type of the network. Our model is verified by theoretical analysis, simulation experiments and real network systems. The results show that the introduction of a small proportion of reinforced edges in the edge-coupled interdependent network can avoid the sudden collapse of the network and significantly improve the robustness of the network.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"65 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comnet/cnad040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Robustness of edge-coupled interdependent networks with reinforced edges
Abstract Previous studies on cascade failures in interdependent networks have mainly focused on node coupling relationships. However, in realistic scenarios, interactions often occur at the edges connecting nodes rather than at the nodes themselves, giving rise to edge-coupled interdependent networks. In this article, we extend the model of partially edge-coupled interdependent networks by introducing reinforced edges with a ratio of ρ. We analyse the formation of finite surviving components in edge-coupled networks, wherein the reinforced edges can function and support their neighbouring nodes to form functional components. To accomplish this, we develop a framework through a detailed mathematical derivation of the proposed model. We then investigate the critical value ρ* of the reinforced edge ratio that can change the phase transition type of the network. Our model is verified by theoretical analysis, simulation experiments and real network systems. The results show that the introduction of a small proportion of reinforced edges in the edge-coupled interdependent network can avoid the sudden collapse of the network and significantly improve the robustness of the network.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network