David Ben-Zvi, Harrison Chen, David Helm, David Nadler
{"title":"连贯的施普林格理论和范畴的德莱尼-朗兰兹对应","authors":"David Ben-Zvi, Harrison Chen, David Helm, David Nadler","doi":"10.1007/s00222-023-01224-2","DOIUrl":null,"url":null,"abstract":"Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant $K$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields $F$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from $K$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, the coherent Springer sheaf . As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of $\\mathrm{GL}_{n}(F)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>GL</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> </mml:math> into coherent sheaves on the stack of Langlands parameters.","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"35 3","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Coherent Springer theory and the categorical Deligne-Langlands correspondence\",\"authors\":\"David Ben-Zvi, Harrison Chen, David Helm, David Nadler\",\"doi\":\"10.1007/s00222-023-01224-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant $K$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>K</mml:mi> </mml:math> -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields $F$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from $K$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>K</mml:mi> </mml:math> -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, the coherent Springer sheaf . As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of $\\\\mathrm{GL}_{n}(F)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>GL</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> </mml:math> into coherent sheaves on the stack of Langlands parameters.\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01224-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01224-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coherent Springer theory and the categorical Deligne-Langlands correspondence
Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant $K$ K -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields $F$ F with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from $K$ K -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, the coherent Springer sheaf . As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of $\mathrm{GL}_{n}(F)$ GLn(F) into coherent sheaves on the stack of Langlands parameters.
期刊介绍:
This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).