求解多目标最优潮流问题的改进差分进化算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani
{"title":"求解多目标最优潮流问题的改进差分进化算法","authors":"Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani","doi":"10.24425/aee.2022.141676","DOIUrl":null,"url":null,"abstract":": This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Differential Evolution Algorithm to solve multi-objective of optimal power flow problem\",\"authors\":\"Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani\",\"doi\":\"10.24425/aee.2022.141676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/aee.2022.141676\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2022.141676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Differential Evolution Algorithm to solve multi-objective of optimal power flow problem
: This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信