Leah A Keating, James P Gleeson, David J P O’Sullivan
{"title":"具有多类型分支过程的群集网络上复杂传染模型的生成函数方法","authors":"Leah A Keating, James P Gleeson, David J P O’Sullivan","doi":"10.1093/comnet/cnad042","DOIUrl":null,"url":null,"abstract":"Abstract Understanding cascading processes on complex network topologies is paramount for modelling how diseases, information, fake news and other media spread. In this article, we extend the multi-type branching process method developed in Keating et al., (2022), which relies on networks having homogenous node properties, to a more general class of clustered networks. Using a model of socially inspired complex contagion we obtain results, not just for the average behaviour of the cascades but for full distributions of the cascade properties. We introduce a new method for the inversion of probability generating functions to recover their underlying probability distributions; this derivation naturally extends to higher dimensions. This inversion technique is used along with the multi-type branching process to obtain univariate and bivariate distributions of cascade properties. Finally, using clique-cover methods, we apply the methodology to synthetic and real-world networks and compare the theoretical distribution of cascade sizes with the results of extensive numerical simulations.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"69 9","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A generating-function approach to modelling complex contagion on clustered networks with multi-type branching processes\",\"authors\":\"Leah A Keating, James P Gleeson, David J P O’Sullivan\",\"doi\":\"10.1093/comnet/cnad042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Understanding cascading processes on complex network topologies is paramount for modelling how diseases, information, fake news and other media spread. In this article, we extend the multi-type branching process method developed in Keating et al., (2022), which relies on networks having homogenous node properties, to a more general class of clustered networks. Using a model of socially inspired complex contagion we obtain results, not just for the average behaviour of the cascades but for full distributions of the cascade properties. We introduce a new method for the inversion of probability generating functions to recover their underlying probability distributions; this derivation naturally extends to higher dimensions. This inversion technique is used along with the multi-type branching process to obtain univariate and bivariate distributions of cascade properties. Finally, using clique-cover methods, we apply the methodology to synthetic and real-world networks and compare the theoretical distribution of cascade sizes with the results of extensive numerical simulations.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"69 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comnet/cnad042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A generating-function approach to modelling complex contagion on clustered networks with multi-type branching processes
Abstract Understanding cascading processes on complex network topologies is paramount for modelling how diseases, information, fake news and other media spread. In this article, we extend the multi-type branching process method developed in Keating et al., (2022), which relies on networks having homogenous node properties, to a more general class of clustered networks. Using a model of socially inspired complex contagion we obtain results, not just for the average behaviour of the cascades but for full distributions of the cascade properties. We introduce a new method for the inversion of probability generating functions to recover their underlying probability distributions; this derivation naturally extends to higher dimensions. This inversion technique is used along with the multi-type branching process to obtain univariate and bivariate distributions of cascade properties. Finally, using clique-cover methods, we apply the methodology to synthetic and real-world networks and compare the theoretical distribution of cascade sizes with the results of extensive numerical simulations.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network