U. P. Prinith Kaveramma, U. Snekhalatha, Varshini Karthik, M. Anuradha
{"title":"基于超声的机器学习辅助子宫肌瘤检测:集成视觉变压器以改进分析","authors":"U. P. Prinith Kaveramma, U. Snekhalatha, Varshini Karthik, M. Anuradha","doi":"10.4015/s1016237223500333","DOIUrl":null,"url":null,"abstract":"The primary objective of this study is to segment the uterine fibroids (leiomyoma) from the ultrasound images of the uterus through semantic segmentation, followed by second-order statistical feature extraction using the Gray-level Co-occurrence Matrix (GLCM). The next objective of the study is to compare the performance of the state-of-the-art method namely Vision Transformer (ViT) with three different machine learning (ML) classifiers such as the Support Vector Machine (SVM), Logistic Regression (LR) and [Formula: see text]-Nearest Neighbor ([Formula: see text]-NN) to classify the images into uterine fibroid and normal. The dataset consists of 50 ultrasound images of uterine fibroids and 50 normal images. Then the images are segmented using region-growing-based semantic segmentation followed by feature extraction and classification using the ML and deep learning (DL) classifiers. Among the ML classifiers, SVM produced a good accuracy of 93.1% compared to the other classifiers. ViT produced an excellent classification accuracy of 97.5%. Hence, ViT outperformed compared to the ML classifiers in uterine fibroid detection. These findings have important implications for clinical practice, as they could help physicians to diagnose and treat uterine fibroids more effectively.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"52 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ULTRASOUND-BASED MACHINE LEARNING-AIDED DETECTION OF UTERINE FIBROIDS: INTEGRATING VISION TRANSFORMER FOR IMPROVED ANALYSIS\",\"authors\":\"U. P. Prinith Kaveramma, U. Snekhalatha, Varshini Karthik, M. Anuradha\",\"doi\":\"10.4015/s1016237223500333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this study is to segment the uterine fibroids (leiomyoma) from the ultrasound images of the uterus through semantic segmentation, followed by second-order statistical feature extraction using the Gray-level Co-occurrence Matrix (GLCM). The next objective of the study is to compare the performance of the state-of-the-art method namely Vision Transformer (ViT) with three different machine learning (ML) classifiers such as the Support Vector Machine (SVM), Logistic Regression (LR) and [Formula: see text]-Nearest Neighbor ([Formula: see text]-NN) to classify the images into uterine fibroid and normal. The dataset consists of 50 ultrasound images of uterine fibroids and 50 normal images. Then the images are segmented using region-growing-based semantic segmentation followed by feature extraction and classification using the ML and deep learning (DL) classifiers. Among the ML classifiers, SVM produced a good accuracy of 93.1% compared to the other classifiers. ViT produced an excellent classification accuracy of 97.5%. Hence, ViT outperformed compared to the ML classifiers in uterine fibroid detection. These findings have important implications for clinical practice, as they could help physicians to diagnose and treat uterine fibroids more effectively.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"52 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
ULTRASOUND-BASED MACHINE LEARNING-AIDED DETECTION OF UTERINE FIBROIDS: INTEGRATING VISION TRANSFORMER FOR IMPROVED ANALYSIS
The primary objective of this study is to segment the uterine fibroids (leiomyoma) from the ultrasound images of the uterus through semantic segmentation, followed by second-order statistical feature extraction using the Gray-level Co-occurrence Matrix (GLCM). The next objective of the study is to compare the performance of the state-of-the-art method namely Vision Transformer (ViT) with three different machine learning (ML) classifiers such as the Support Vector Machine (SVM), Logistic Regression (LR) and [Formula: see text]-Nearest Neighbor ([Formula: see text]-NN) to classify the images into uterine fibroid and normal. The dataset consists of 50 ultrasound images of uterine fibroids and 50 normal images. Then the images are segmented using region-growing-based semantic segmentation followed by feature extraction and classification using the ML and deep learning (DL) classifiers. Among the ML classifiers, SVM produced a good accuracy of 93.1% compared to the other classifiers. ViT produced an excellent classification accuracy of 97.5%. Hence, ViT outperformed compared to the ML classifiers in uterine fibroid detection. These findings have important implications for clinical practice, as they could help physicians to diagnose and treat uterine fibroids more effectively.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.