论Papadakis和Petrotou的各向异性定理

Q3 Mathematics
Kalle Karu, Elizabeth Xiao
{"title":"论Papadakis和Petrotou的各向异性定理","authors":"Kalle Karu, Elizabeth Xiao","doi":"10.5802/alco.298","DOIUrl":null,"url":null,"abstract":"We study the anisotropy theorem for Stanley-Reisner rings of simplicial homology spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is an explicit description of the quadratic form. We use this description to prove a conjecture stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we prove anisotropy for certain homology spheres over the field ℚ. These results provide another self-contained proof of the g-conjecture for homology spheres in characteristic 2.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"123 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the anisotropy theorem of Papadakis and Petrotou\",\"authors\":\"Kalle Karu, Elizabeth Xiao\",\"doi\":\"10.5802/alco.298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the anisotropy theorem for Stanley-Reisner rings of simplicial homology spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is an explicit description of the quadratic form. We use this description to prove a conjecture stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we prove anisotropy for certain homology spheres over the field ℚ. These results provide another self-contained proof of the g-conjecture for homology spheres in characteristic 2.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"123 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

研究了Papadakis和Petrotou在特征2上的简单同调球Stanley-Reisner环的各向异性定理。这个定理暗示了这类球体的Hard Lefschetz定理和McMullen的g猜想。我们的第一个结果是二次型的显式描述。我们用这个描述来证明Papadakis和Petrotou提出的一个猜想。所有具有特征2的同调球和伪流形的各向异性定理都是从这个猜想推导出来的。利用专门化论证,证明了场上某些同调球的各向异性。这些结果为特征为2的同调球的g猜想提供了另一个完备的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the anisotropy theorem of Papadakis and Petrotou
We study the anisotropy theorem for Stanley-Reisner rings of simplicial homology spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is an explicit description of the quadratic form. We use this description to prove a conjecture stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we prove anisotropy for certain homology spheres over the field ℚ. These results provide another self-contained proof of the g-conjecture for homology spheres in characteristic 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信