标量函数回归模型的鲁棒估计

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zi Miao, Lihong Wang
{"title":"标量函数回归模型的鲁棒估计","authors":"Zi Miao, Lihong Wang","doi":"10.1080/00949655.2023.2279191","DOIUrl":null,"url":null,"abstract":"AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"105 3","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation for function-on-scalar regression models\",\"authors\":\"Zi Miao, Lihong Wang\",\"doi\":\"10.1080/00949655.2023.2279191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].\",\"PeriodicalId\":50040,\"journal\":{\"name\":\"Journal of Statistical Computation and Simulation\",\"volume\":\"105 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Computation and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00949655.2023.2279191\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00949655.2023.2279191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于因变量为泛函、预测量为标量的泛函线性模型,同时进行变量选择和回归参数估计的鲁棒正则化是一个重要而又具有挑战性的问题。本文提出了两种正则化鲁棒估计方法。第一估计量采用核希尔伯特空间再现思想、最小绝对偏差和群Lasso技术。第二种估计方法在第一种方法的基础上,采用预白化技术,利用泛函主成分分析估计误差协方差函数。进行了模拟研究,以检验所提出的方法在小样本量下的性能。该方法也适用于加拿大天气资料集,该资料集由加拿大各地35个气象站在1960年至1994年观测到的日平均气温和降水组成。数值仿真和实际数据分析表明,该方法具有较好的鲁棒性。关键词:函数回归模型参数估计稳健性变量选择披露声明作者未报告潜在利益冲突。本研究受国家自然科学基金资助[批准号:11671194]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust estimation for function-on-scalar regression models
AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Computation and Simulation
Journal of Statistical Computation and Simulation 数学-计算机:跨学科应用
CiteScore
2.30
自引率
8.30%
发文量
156
审稿时长
4-8 weeks
期刊介绍: Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer. Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems. JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented. Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信