{"title":"标量函数回归模型的鲁棒估计","authors":"Zi Miao, Lihong Wang","doi":"10.1080/00949655.2023.2279191","DOIUrl":null,"url":null,"abstract":"AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"105 3","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation for function-on-scalar regression models\",\"authors\":\"Zi Miao, Lihong Wang\",\"doi\":\"10.1080/00949655.2023.2279191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].\",\"PeriodicalId\":50040,\"journal\":{\"name\":\"Journal of Statistical Computation and Simulation\",\"volume\":\"105 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Computation and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00949655.2023.2279191\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00949655.2023.2279191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Robust estimation for function-on-scalar regression models
AbstractFor the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.Keywords: Functional regression modelsparameter estimationrobustnessvariable selection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 11671194].
期刊介绍:
Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer.
Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems.
JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented.
Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.