Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao
{"title":"基于接近相位测量的开源飞机噪声预测模型评估","authors":"Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao","doi":"10.2514/1.c037332","DOIUrl":null,"url":null,"abstract":"An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of an Open-Source Aircraft Noise Prediction Model Using Approach Phase Measurements\",\"authors\":\"Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao\",\"doi\":\"10.2514/1.c037332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037332\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037332","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Assessment of an Open-Source Aircraft Noise Prediction Model Using Approach Phase Measurements
An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.