基于接近相位测量的开源飞机噪声预测模型评估

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao
{"title":"基于接近相位测量的开源飞机噪声预测模型评估","authors":"Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao","doi":"10.2514/1.c037332","DOIUrl":null,"url":null,"abstract":"An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of an Open-Source Aircraft Noise Prediction Model Using Approach Phase Measurements\",\"authors\":\"Evangelia Maria Thoma, Tomas Grönstedt, Evelyn Otero Sola, Xin Zhao\",\"doi\":\"10.2514/1.c037332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037332\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037332","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个用于飞机噪声预测的开源仿真模型,并利用最先进的发动机和飞机的反向传播噪声测量进行了验证。验证的重点是进近程序,并在17个记录站进行了地面噪声测量,这些测量是在2021年4月8日上午进行的总共18次连续飞行中进行的。两架A321neo飞机使用LEAP-1A发动机进行飞行。结果表明,在不同的进近配置和飞行条件下,所提出的噪声模型能很好地估计出源噪声。使用大量高升力装置的配置在中频和高频区域预测得特别好,而较低配置设置显示出更大的频谱偏差,这部分归因于增加的飞机-麦克风距离引起的测量不确定性。该模型可以在2 dB的精度范围内预测所有配置的总体平均总声强级,而每个麦克风的平均预测电平与测量平均值相差不到3 dB,除了一个情况。飞机速度的变化对预测的总噪声有很强的影响,这与公认的机身噪声模型的六次方马赫数远场声强标度规律相匹配,而测量结果表明相关性不太显著。这主要是由于安装效果和降噪措施没有包括在模型中。然而,预测噪声和测量噪声的光谱变化显示出相似的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of an Open-Source Aircraft Noise Prediction Model Using Approach Phase Measurements
An open-source simulation model for aircraft noise prediction is presented and validated using backpropagated noise measurements for a state-of-the-art engine and aircraft. The validation is focused on approach procedures and was performed using ground-based noise measurements that were taken at 17 recording stations for a total of 18 consecutive flights carried out during the morning of 8 April 2021. The flights were performed using two A321neo aircraft with LEAP-1A engines. It is demonstrated that the presented noise model provides a satisfactory estimation of the source noise for varying approach configurations and flight conditions. Configurations using a greater number of high-lift devices are particularly well predicted in the mid- and high-frequency regions, whereas the lower configuration settings show greater spectral deviations, which are partly attributed to measurement uncertainties caused by the increased aircraft–microphone distance. The model can predict the overall mean total sound intensity level within a 2 dB accuracy for all configurations, while the average predicted level at each microphone differs by less than 3 dB from the measurement average, for all cases except one. Variation in aircraft speed showed to have a strong impact on the predicted total noise, which matches the well-recognized sixth-power Mach number far-field sound intensity scaling law for airframe noise models, while the measurements indicated a less significant dependency. This is mainly due to installation effects and noise reduction measures that are not included in the models. Nevertheless, the variations in the spectra of the predicted and measured noise showed similar patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信