Francisco E. Fontúrbel, Héctor González‐Ancin, Noemí Rojas‐Hernández, Caren Vega‐Retter
{"title":"选择性采伐对楔石槲寄生遗传多样性和种群结构的影响","authors":"Francisco E. Fontúrbel, Héctor González‐Ancin, Noemí Rojas‐Hernández, Caren Vega‐Retter","doi":"10.1002/1438-390x.12170","DOIUrl":null,"url":null,"abstract":"Abstract The effects of habitat degradation remain not fully understood. A recent study reported low effects of habitat degradation on plant genetic diversity but indicates that reduction in habitat quality could impact it as well as gene flow indirectly via ecological interactions. Selective logging is a way of habitat degradation, but studies examining its effects on plant genetic diversity on non‐logged forest plant species are relatively scarce. Using 3470 single‐nucleotide polymorphisms, we assess the effects of different selective logging intensities on the genetic diversity of 66 individuals of a keystone mistletoe ( Tristerix corymbosus ). We also examined the possible relationship with its seed disperser ( Dromiciops gliroides ) abundance in three sites of the temperate rainforests of southern Chile, with different levels of selective logging intensity. Our results show that selective logging increases allelic richness and inbreeding in this mistletoe; inbreeding increased with selective logging intensity, and heterozygosity decreased with D. gliroides abundance. While wood extraction seems to positively affect T. corymbosus genetic diversity, its long‐term consequences—such as increased inbreeding—are yet to be assessed in future studies.","PeriodicalId":54597,"journal":{"name":"Population Ecology","volume":"80 S1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of selective logging on genetic diversity and population structure of a keystone mistletoe\",\"authors\":\"Francisco E. Fontúrbel, Héctor González‐Ancin, Noemí Rojas‐Hernández, Caren Vega‐Retter\",\"doi\":\"10.1002/1438-390x.12170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effects of habitat degradation remain not fully understood. A recent study reported low effects of habitat degradation on plant genetic diversity but indicates that reduction in habitat quality could impact it as well as gene flow indirectly via ecological interactions. Selective logging is a way of habitat degradation, but studies examining its effects on plant genetic diversity on non‐logged forest plant species are relatively scarce. Using 3470 single‐nucleotide polymorphisms, we assess the effects of different selective logging intensities on the genetic diversity of 66 individuals of a keystone mistletoe ( Tristerix corymbosus ). We also examined the possible relationship with its seed disperser ( Dromiciops gliroides ) abundance in three sites of the temperate rainforests of southern Chile, with different levels of selective logging intensity. Our results show that selective logging increases allelic richness and inbreeding in this mistletoe; inbreeding increased with selective logging intensity, and heterozygosity decreased with D. gliroides abundance. While wood extraction seems to positively affect T. corymbosus genetic diversity, its long‐term consequences—such as increased inbreeding—are yet to be assessed in future studies.\",\"PeriodicalId\":54597,\"journal\":{\"name\":\"Population Ecology\",\"volume\":\"80 S1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Population Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1438-390x.12170\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Population Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1438-390x.12170","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Effects of selective logging on genetic diversity and population structure of a keystone mistletoe
Abstract The effects of habitat degradation remain not fully understood. A recent study reported low effects of habitat degradation on plant genetic diversity but indicates that reduction in habitat quality could impact it as well as gene flow indirectly via ecological interactions. Selective logging is a way of habitat degradation, but studies examining its effects on plant genetic diversity on non‐logged forest plant species are relatively scarce. Using 3470 single‐nucleotide polymorphisms, we assess the effects of different selective logging intensities on the genetic diversity of 66 individuals of a keystone mistletoe ( Tristerix corymbosus ). We also examined the possible relationship with its seed disperser ( Dromiciops gliroides ) abundance in three sites of the temperate rainforests of southern Chile, with different levels of selective logging intensity. Our results show that selective logging increases allelic richness and inbreeding in this mistletoe; inbreeding increased with selective logging intensity, and heterozygosity decreased with D. gliroides abundance. While wood extraction seems to positively affect T. corymbosus genetic diversity, its long‐term consequences—such as increased inbreeding—are yet to be assessed in future studies.
期刊介绍:
Population Ecology, formerly known as Researches on Population Ecology launched in Dec 1952, is the official journal of the Society of Population Ecology. Population Ecology publishes original research articles and reviews (including invited reviews) on various aspects of population ecology, from the individual to the community level. Among the specific fields included are population dynamics and distribution, evolutionary ecology, ecological genetics, theoretical models, conservation biology, agroecosystem studies, and bioresource management. Manuscripts should contain new results of empirical and/or theoretical investigations concerning facts, patterns, processes, mechanisms or concepts of population ecology; those purely descriptive in nature are not suitable for this journal. All manuscripts are reviewed anonymously by two or more referees, and the final editorial decision is made by the Chief Editor or an Associate Editor based on the referees'' evaluations.