{"title":"真空环境下挤压膜悬浮非接触式悬浮机构的研制","authors":"Ryota Ogawa, Taiki Ito, Shouhei Kawada, Masaaki Miyatake, Cristinel Mares, Tadeusz Stolarski, Shigeka Yoshimoto","doi":"10.1177/13506501231211624","DOIUrl":null,"url":null,"abstract":"Results of an experimental study on the levitation of a light object created by the squeeze-film mechanism under both vacuum and atmospheric conditions are presented and discussed. Two working substances were used, that is vacuum pump oil and ionic liquid. It was determined that vacuum pump oil produced a much higher levitation altitude of the floating light object compared to the ionic liquid. Also, it was established that levitation can be achieved under both vacuum and atmospheric conditions. The levitation height of the light object was slightly higher under vacuum conditions.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"55 5","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of non-contact floating mechanism utilizing squeeze film levitation under vacuum environment\",\"authors\":\"Ryota Ogawa, Taiki Ito, Shouhei Kawada, Masaaki Miyatake, Cristinel Mares, Tadeusz Stolarski, Shigeka Yoshimoto\",\"doi\":\"10.1177/13506501231211624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of an experimental study on the levitation of a light object created by the squeeze-film mechanism under both vacuum and atmospheric conditions are presented and discussed. Two working substances were used, that is vacuum pump oil and ionic liquid. It was determined that vacuum pump oil produced a much higher levitation altitude of the floating light object compared to the ionic liquid. Also, it was established that levitation can be achieved under both vacuum and atmospheric conditions. The levitation height of the light object was slightly higher under vacuum conditions.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"55 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231211624\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231211624","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development of non-contact floating mechanism utilizing squeeze film levitation under vacuum environment
Results of an experimental study on the levitation of a light object created by the squeeze-film mechanism under both vacuum and atmospheric conditions are presented and discussed. Two working substances were used, that is vacuum pump oil and ionic liquid. It was determined that vacuum pump oil produced a much higher levitation altitude of the floating light object compared to the ionic liquid. Also, it was established that levitation can be achieved under both vacuum and atmospheric conditions. The levitation height of the light object was slightly higher under vacuum conditions.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).