随机有向无环图中后代的数目

Pub Date : 2023-11-07 DOI:10.1002/rsa.21195
Svante Janson
{"title":"随机有向无环图中后代的数目","authors":"Svante Janson","doi":"10.1002/rsa.21195","DOIUrl":null,"url":null,"abstract":"Abstract We consider a well‐known model of random directed acyclic graphs of order , obtained by recursively adding vertices, where each new vertex has a fixed outdegree and the endpoints of the edges from it are chosen uniformly at random among previously existing vertices. Our main results concern the number of vertices that are descendants of . We show that converges in distribution; the limit distribution is, up to a constant factor, given by the th root of a Gamma distributed variable with distribution . When , the limit distribution can also be described as a chi distribution . We also show convergence of moments, and find thus the asymptotics of the mean and higher moments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of descendants in a random directed acyclic graph\",\"authors\":\"Svante Janson\",\"doi\":\"10.1002/rsa.21195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a well‐known model of random directed acyclic graphs of order , obtained by recursively adding vertices, where each new vertex has a fixed outdegree and the endpoints of the edges from it are chosen uniformly at random among previously existing vertices. Our main results concern the number of vertices that are descendants of . We show that converges in distribution; the limit distribution is, up to a constant factor, given by the th root of a Gamma distributed variable with distribution . When , the limit distribution can also be described as a chi distribution . We also show convergence of moments, and find thus the asymptotics of the mean and higher moments.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个众所周知的有序随机有向无环图模型,该模型通过递归添加顶点获得,其中每个新顶点具有固定的出界度,并且其边缘的端点在先前存在的顶点中随机选择。我们的主要结果与的后代顶点的数量有关。我们证明它在分布上是收敛的;极限分布是,直到一个常数因子,由一个具有分布的分布变量的根号给出。时,极限分布也可以描述为chi分布。我们还证明了矩的收敛性,并由此找到了均值矩和高矩的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The number of descendants in a random directed acyclic graph
Abstract We consider a well‐known model of random directed acyclic graphs of order , obtained by recursively adding vertices, where each new vertex has a fixed outdegree and the endpoints of the edges from it are chosen uniformly at random among previously existing vertices. Our main results concern the number of vertices that are descendants of . We show that converges in distribution; the limit distribution is, up to a constant factor, given by the th root of a Gamma distributed variable with distribution . When , the limit distribution can also be described as a chi distribution . We also show convergence of moments, and find thus the asymptotics of the mean and higher moments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信