Santacroce, Marina, Siri, Paola, Trivellato, Barbara
{"title":"跳跃扩散模型中效用最大化的正反向SDEs系统","authors":"Santacroce, Marina, Siri, Paola, Trivellato, Barbara","doi":"10.48550/arxiv.2302.08253","DOIUrl":null,"url":null,"abstract":"We consider the classical problem of maximizing the expected utility of terminal net wealth with a final random liability in a simple jump-diffusion model. In the spirit of Horst et al. (2014) and Santacroce-Trivellato (2014), under suitable conditions the optimal strategy is expressed in implicit form in terms of a forward backward system of equations. Some explicit results are presented for the pure jump model and for exponential utilities.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion\\n Models\",\"authors\":\"Santacroce, Marina, Siri, Paola, Trivellato, Barbara\",\"doi\":\"10.48550/arxiv.2302.08253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the classical problem of maximizing the expected utility of terminal net wealth with a final random liability in a simple jump-diffusion model. In the spirit of Horst et al. (2014) and Santacroce-Trivellato (2014), under suitable conditions the optimal strategy is expressed in implicit form in terms of a forward backward system of equations. Some explicit results are presented for the pure jump model and for exponential utilities.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2302.08253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2302.08253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在一个简单的跳跃-扩散模型中,考虑具有最终随机负债的终端净财富期望效用最大化的经典问题。在Horst et al.(2014)和Santacroce-Trivellato(2014)的精神中,在合适的条件下,最优策略以正向倒向方程组的隐式形式表示。对纯跳跃模型和指数效用给出了一些明确的结果。
Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion
Models
We consider the classical problem of maximizing the expected utility of terminal net wealth with a final random liability in a simple jump-diffusion model. In the spirit of Horst et al. (2014) and Santacroce-Trivellato (2014), under suitable conditions the optimal strategy is expressed in implicit form in terms of a forward backward system of equations. Some explicit results are presented for the pure jump model and for exponential utilities.