弱井阶和fraÏssÉ的猜想

Pub Date : 2023-09-27 DOI:10.1017/jsl.2023.70
ANTON FREUND, DAVIDE MANCA
{"title":"弱井阶和fraÏssÉ的猜想","authors":"ANTON FREUND, DAVIDE MANCA","doi":"10.1017/jsl.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\\mathbf {RCA}_0$ , by giving a new proof of $\\Sigma ^0_2$ -induction.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEAK WELL ORDERS AND FRAÏSSÉ’S CONJECTURE\",\"authors\":\"ANTON FREUND, DAVIDE MANCA\",\"doi\":\"10.1017/jsl.2023.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\\\\mathbf {RCA}_0$ , by giving a new proof of $\\\\Sigma ^0_2$ -induction.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可数井阶的概念允许在初始段之间的嵌入方面有另一种定义。我们用逆向数学的框架来研究这个定义的逻辑强度及其与Fraïssé猜想的联系,该猜想已被Laver证明。我们还通过给出$\Sigma ^0_2$ -归纳法的新证明,填补了Shore关于Fraïssé猜想在$\mathbf {RCA}_0$上蕴涵算术超限递归的证明中的一个小空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WEAK WELL ORDERS AND FRAÏSSÉ’S CONJECTURE
Abstract The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$ , by giving a new proof of $\Sigma ^0_2$ -induction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信