对120°C太阳能蓄热槽的设计进行了研究

IF 2 Q4 ENERGY & FUELS
R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou
{"title":"对120°C太阳能蓄热槽的设计进行了研究","authors":"R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou","doi":"10.1080/14786451.2023.2246080","DOIUrl":null,"url":null,"abstract":"This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"82 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the design of a solar heat storage tank at 120°C\",\"authors\":\"R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou\",\"doi\":\"10.1080/14786451.2023.2246080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.\",\"PeriodicalId\":14406,\"journal\":{\"name\":\"International Journal of Sustainable Energy\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14786451.2023.2246080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2246080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种介于高温热泵和有机朗肯循环装置之间的潜热储水箱的材料选择过程、设计和尺寸确定过程。所选择的储热材料是熔点为117°C的S117相变材料,与系统的工作温度约为120°C相匹配。根据项目合作伙伴的实际经验,选择了优化传热过程的水箱配置,并在文档中进行了详细描述。本文还介绍了该储罐计算流体动力学研究的仿真结果。这项工作对设计中温应用的紧凑型储热罐的工程师应该是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the design of a solar heat storage tank at 120°C
This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
3.20%
发文量
52
期刊介绍: Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信