R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou
{"title":"对120°C太阳能蓄热槽的设计进行了研究","authors":"R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou","doi":"10.1080/14786451.2023.2246080","DOIUrl":null,"url":null,"abstract":"This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"82 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the design of a solar heat storage tank at 120°C\",\"authors\":\"R. Christodoulaki, I. S. Akmandor, O. Bayer, U. Desideri, L. Ferrari, G. F. Frate, V. Drosou\",\"doi\":\"10.1080/14786451.2023.2246080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.\",\"PeriodicalId\":14406,\"journal\":{\"name\":\"International Journal of Sustainable Energy\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14786451.2023.2246080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2246080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
On the design of a solar heat storage tank at 120°C
This work presents the materials selection process, the design and the dimensioning process of a latent heat storage tank that works between a high temperature heat pump and an Organic Rankine Cycle unit. The selected heat storage material is the S117 Phase Change Material that has a melting point at 117°C matches the operational temperature of the system at approximately 120°C. The tank configuration is selected for optimised heat transfer process, resulted from practical experience of the project partners and it is described in details in the document. The simulation results from the Computational Fluid Dynamic study of the tank are also presented here. This work should be useful for engineers designing compact heat storage tanks for medium temperature applications.
期刊介绍:
Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.