冲击后压缩&湿热条件下芳纶-玄武岩/环氧复合材料的振动分析

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY
Anuj Deshmukh, Yogeesha Pai
{"title":"冲击后压缩&湿热条件下芳纶-玄武岩/环氧复合材料的振动分析","authors":"Anuj Deshmukh, Yogeesha Pai","doi":"10.1080/23311916.2023.2262812","DOIUrl":null,"url":null,"abstract":"With the application of composites in various industries viz. aerospace, automobile, defence and marine, it becomes essential to carry out the Compression After Impact (CAI) and vibration tests to study their behavior in different environmental conditions. This study investigates the significance of CAI and damping characteristics of the aramid-basalt/epoxy interply composites under different hygrothermal conditions. In this examination, laminates were exposed to three different ageing conditions, namely, ambient (ageing in distilled water at 25°C), sub-zero (ageing in distilled water at −10°C), and humid (ageing in an environmental chamber maintained at 40°C and 60% relative humidity) for a duration of 180 days. Moisture saturated specimens were subjected to low velocity impacts (LVI) of 10 J and 15 J energy levels using drop weight impact method. CAI test was carried out on post impact specimens to analyze the residual compressive strengths. Furthermore, impact hammer and impedance tube tests were also conducted to compute the damping properties and sound transmission loss (dB) of the specimens. The results were compared with the pristine samples to analyze the effect of hygrothermal conditions on the CAI and vibrational properties. The results indicated that the moisture has a detrimental effect on the compressive residual strength, natural frequency, and sound transmission loss of the specimens. The Scanning Electron Microscopy (SEM) of fractured CAI specimens displayed the occurrence of various types of damages such as fiber fractures, delamination, matrix fractures, etc as the primary reason for failure of the specimens.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression after impact & vibrational analysis of aramid-basalt/epoxy interply composites under hygrothermal conditions\",\"authors\":\"Anuj Deshmukh, Yogeesha Pai\",\"doi\":\"10.1080/23311916.2023.2262812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the application of composites in various industries viz. aerospace, automobile, defence and marine, it becomes essential to carry out the Compression After Impact (CAI) and vibration tests to study their behavior in different environmental conditions. This study investigates the significance of CAI and damping characteristics of the aramid-basalt/epoxy interply composites under different hygrothermal conditions. In this examination, laminates were exposed to three different ageing conditions, namely, ambient (ageing in distilled water at 25°C), sub-zero (ageing in distilled water at −10°C), and humid (ageing in an environmental chamber maintained at 40°C and 60% relative humidity) for a duration of 180 days. Moisture saturated specimens were subjected to low velocity impacts (LVI) of 10 J and 15 J energy levels using drop weight impact method. CAI test was carried out on post impact specimens to analyze the residual compressive strengths. Furthermore, impact hammer and impedance tube tests were also conducted to compute the damping properties and sound transmission loss (dB) of the specimens. The results were compared with the pristine samples to analyze the effect of hygrothermal conditions on the CAI and vibrational properties. The results indicated that the moisture has a detrimental effect on the compressive residual strength, natural frequency, and sound transmission loss of the specimens. The Scanning Electron Microscopy (SEM) of fractured CAI specimens displayed the occurrence of various types of damages such as fiber fractures, delamination, matrix fractures, etc as the primary reason for failure of the specimens.\",\"PeriodicalId\":10464,\"journal\":{\"name\":\"Cogent Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311916.2023.2262812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2262812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着复合材料在航空航天、汽车、国防、船舶等领域的广泛应用,开展冲击后压缩试验和振动试验研究复合材料在不同环境条件下的性能变得十分必要。研究了不同湿热条件下芳纶-玄武岩/环氧树脂夹层复合材料的CAI和阻尼特性的意义。在这项研究中,层压板暴露在三种不同的老化条件下,即环境(在25°C的蒸馏水中老化)、零下(在- 10°C的蒸馏水中老化)和潮湿(在保持40°C和60%相对湿度的环境室中老化),持续180天。采用落锤冲击法对湿饱和试样进行了10 J和15 J能级的低速冲击。对冲击后试样进行CAI试验,分析残余抗压强度。此外,还进行了冲击锤和阻抗管试验,计算了试件的阻尼特性和传声损失(dB)。将实验结果与原始样品进行了比较,分析了湿热条件对CAI和振动性能的影响。结果表明,水分对试件的残余抗压强度、固有频率和透声损失均有不利影响。断裂CAI试件的扫描电镜(SEM)显示,纤维断裂、分层、基体断裂等多种损伤的发生是试件破坏的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compression after impact & vibrational analysis of aramid-basalt/epoxy interply composites under hygrothermal conditions
With the application of composites in various industries viz. aerospace, automobile, defence and marine, it becomes essential to carry out the Compression After Impact (CAI) and vibration tests to study their behavior in different environmental conditions. This study investigates the significance of CAI and damping characteristics of the aramid-basalt/epoxy interply composites under different hygrothermal conditions. In this examination, laminates were exposed to three different ageing conditions, namely, ambient (ageing in distilled water at 25°C), sub-zero (ageing in distilled water at −10°C), and humid (ageing in an environmental chamber maintained at 40°C and 60% relative humidity) for a duration of 180 days. Moisture saturated specimens were subjected to low velocity impacts (LVI) of 10 J and 15 J energy levels using drop weight impact method. CAI test was carried out on post impact specimens to analyze the residual compressive strengths. Furthermore, impact hammer and impedance tube tests were also conducted to compute the damping properties and sound transmission loss (dB) of the specimens. The results were compared with the pristine samples to analyze the effect of hygrothermal conditions on the CAI and vibrational properties. The results indicated that the moisture has a detrimental effect on the compressive residual strength, natural frequency, and sound transmission loss of the specimens. The Scanning Electron Microscopy (SEM) of fractured CAI specimens displayed the occurrence of various types of damages such as fiber fractures, delamination, matrix fractures, etc as the primary reason for failure of the specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Engineering
Cogent Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
4.00
自引率
5.30%
发文量
213
审稿时长
13 weeks
期刊介绍: One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信