近似多目标优化问题:你能做到多精确?

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten
{"title":"近似多目标优化问题:你能做到多精确?","authors":"Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten","doi":"10.1007/s00186-023-00836-x","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation sets (also called $$\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ε</mml:mi> </mml:math> -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\\frac{1}{\\varepsilon }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>ε</mml:mi> </mml:mfrac> </mml:math> ). While an approximation guarantee of $$1+\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> for any $$\\varepsilon &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ε</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation set.","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating multiobjective optimization problems: How exact can you be?\",\"authors\":\"Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten\",\"doi\":\"10.1007/s00186-023-00836-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation sets (also called $$\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ε</mml:mi> </mml:math> -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\\\\frac{1}{\\\\varepsilon }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>ε</mml:mi> </mml:mfrac> </mml:math> ). While an approximation guarantee of $$1+\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> for any $$\\\\varepsilon &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ε</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation set.\",\"PeriodicalId\":49862,\"journal\":{\"name\":\"Mathematical Methods of Operations Research\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-023-00836-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00186-023-00836-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要:众所周知,在非常弱的假设条件下,多目标优化问题承认 $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ (1 + ε,⋯,1 + ε) -近似集(也称为 $$\varepsilon $$ ε -Pareto集)的多项式基数(在实例的大小和在 $$\frac{1}{\varepsilon }$$ 1 ε)。而近似保证 $$1+\varepsilon $$ 1 + ε $$\varepsilon >0$$ ε &gt;对于单目标问题,0是人们所能期望的最佳值(除了将问题解决到最优性之外),甚至比 $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ 在多目标情况下可以考虑(1 + ε,⋯,1 + ε),因为在某些目标中近似可能是精确的。因此,本文考虑部分精确逼近集,该逼近集要求在某些目标上精确逼近每个可行解,即逼近保证为1,同时仍能得到的保证 $$1+\varepsilon $$ 其他都是1 + ε。我们刻画了一般多目标优化问题中保证存在的多项式-基数、部分精确近似集的类型。此外,我们研究了关于包含解的(弱)效率的最小基数部分精确逼近集,并将它们的基数与a的最小基数联系起来 $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ (1 + ε,⋯,1 + ε) -近似集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximating multiobjective optimization problems: How exact can you be?

Approximating multiobjective optimization problems: How exact can you be?
Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ ( 1 + ε , , 1 + ε ) -approximation sets (also called $$\varepsilon $$ ε -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\frac{1}{\varepsilon }$$ 1 ε ). While an approximation guarantee of $$1+\varepsilon $$ 1 + ε for any $$\varepsilon >0$$ ε > 0 is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ ( 1 + ε , , 1 + ε ) can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\varepsilon $$ 1 + ε in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ ( 1 + ε , , 1 + ε ) -approximation set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience. All papers are refereed. The emphasis is on originality, quality, and importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信