Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten
{"title":"近似多目标优化问题:你能做到多精确?","authors":"Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten","doi":"10.1007/s00186-023-00836-x","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation sets (also called $$\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ε</mml:mi> </mml:math> -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\\frac{1}{\\varepsilon }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>ε</mml:mi> </mml:mfrac> </mml:math> ). While an approximation guarantee of $$1+\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> for any $$\\varepsilon >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ε</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\\varepsilon ,\\dots ,1+\\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation set.","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating multiobjective optimization problems: How exact can you be?\",\"authors\":\"Cristina Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, Daniel Vanderpooten\",\"doi\":\"10.1007/s00186-023-00836-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation sets (also called $$\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ε</mml:mi> </mml:math> -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\\\\frac{1}{\\\\varepsilon }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>ε</mml:mi> </mml:mfrac> </mml:math> ). While an approximation guarantee of $$1+\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> for any $$\\\\varepsilon >0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ε</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\\\\varepsilon ,\\\\dots ,1+\\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -approximation set.\",\"PeriodicalId\":49862,\"journal\":{\"name\":\"Mathematical Methods of Operations Research\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-023-00836-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00186-023-00836-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximating multiobjective optimization problems: How exact can you be?
Abstract It is well known that, under very weak assumptions, multiobjective optimization problems admit $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ (1+ε,⋯,1+ε) -approximation sets (also called $$\varepsilon $$ ε -Pareto sets ) of polynomial cardinality (in the size of the instance and in $$\frac{1}{\varepsilon }$$ 1ε ). While an approximation guarantee of $$1+\varepsilon $$ 1+ε for any $$\varepsilon >0$$ ε>0 is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ (1+ε,⋯,1+ε) can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 1, in some of the objectives while still obtaining a guarantee of $$1+\varepsilon $$ 1+ε in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a $$(1+\varepsilon ,\dots ,1+\varepsilon )$$ (1+ε,⋯,1+ε) -approximation set.
期刊介绍:
This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience.
All papers are refereed. The emphasis is on originality, quality, and importance.